\[ \boxed { x \left ( xy \left ( x \right ) -2 \right ) {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) +{x}^{2} \left ( y \left ( x \right ) \right ) ^{3}+x \left ( y \left ( x \right ) \right ) ^{2}-2\,y \left ( x \right ) =0} \]
Mathematica: cpu = 0.030004 (sec), leaf count = 99 \[ \left \{\left \{y(x)\to -\frac {2 x}{\frac {\sqrt {2} \sqrt {-2 x \left (c_1-\log (x)\right )-\frac {x}{2}}}{\sqrt {-\frac {1}{x^3}}}-x^2}\right \},\left \{y(x)\to \frac {2 x}{\frac {\sqrt {2} \sqrt {-2 x \left (c_1-\log (x)\right )-\frac {x}{2}}}{\sqrt {-\frac {1}{x^3}}}+x^2}\right \}\right \} \]
Maple: cpu = 0.016 (sec), leaf count = 59 \[ \left \{ y \left ( x \right ) =-{\frac {1}{ \left ( 2\,\ln \left ( x \right ) -2\,{\it \_C1} \right ) x} \left ( -1+\sqrt {1-4\,\ln \left ( x \right ) +4\,{\it \_C1}} \right ) },y \left ( x \right ) ={\frac {1}{ \left ( 2\,\ln \left ( x \right ) -2\,{\it \_C1} \right ) x} \left ( 1+ \sqrt {1-4\,\ln \left ( x \right ) +4\,{\it \_C1}} \right ) } \right \} \]