\[ \boxed { x \left ( xy \left ( x \right ) +{x}^{4}-1 \right ) {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) -y \left ( x \right ) \left ( xy \left ( x \right ) -{x}^{4}-1 \right ) =0} \]
Mathematica: cpu = 0.358046 (sec), leaf count = 38 \[ \text {Solve}\left [\frac {c_1+2 x y(x)-2 \log \left (\frac {1}{1-x y(x)}\right )-2}{x^2 y(x)^2}+\frac {1}{x^4}=0,y(x)\right ] \]
Maple: cpu = 0.078 (sec), leaf count = 98 \[ \left \{ y \left ( x \right ) ={\frac {-{\it \_C1}+{{\rm e}^{{\it RootOf } \left ( -2\,{\it \_Z}\,{x}^{4} \left ( {{\rm e}^{{\it \_Z}}} \right ) ^ {2}+2\,{x}^{4} \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{2}-2\,{{\rm e}^{ {\it \_Z}}}{\it \_C1}\,{x}^{4}+ \left ( {{\rm e}^{{\it \_Z}}} \right ) ^ {2}-2\,{{\rm e}^{{\it \_Z}}}{\it \_C1}+{{\it \_C1}}^{2} \right ) }}}{x{ {\rm e}^{{\it RootOf} \left ( -2\,{\it \_Z}\,{x}^{4} \left ( {{\rm e}^{{ \it \_Z}}} \right ) ^{2}+2\,{x}^{4} \left ( {{\rm e}^{{\it \_Z}}} \right ) ^{2}-2\,{{\rm e}^{{\it \_Z}}}{\it \_C1}\,{x}^{4}+ \left ( { {\rm e}^{{\it \_Z}}} \right ) ^{2}-2\,{{\rm e}^{{\it \_Z}}}{\it \_C1}+{ {\it \_C1}}^{2} \right ) }}}} \right \} \]