\[ \boxed { \left ( \left ( y \left ( x \right ) \right ) ^{2}+{x}^{2} \right ) {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) +2\,x \left ( y \left ( x \right ) +2\,x \right ) =0} \]
Mathematica: cpu = 0.100013 (sec), leaf count = 370 \[ \left \{\left \{y(x)\to \frac {\sqrt [3]{\sqrt {-8 e^{3 c_1} x^3+e^{6 c_1}+20 x^6}+e^{3 c_1}-4 x^3}}{\sqrt [3]{2}}-\frac {\sqrt [3]{2} x^2}{\sqrt [3]{\sqrt {-8 e^{3 c_1} x^3+e^{6 c_1}+20 x^6}+e^{3 c_1}-4 x^3}}\right \},\left \{y(x)\to \frac {\left (1+i \sqrt {3}\right ) x^2}{2^{2/3} \sqrt [3]{\sqrt {-8 e^{3 c_1} x^3+e^{6 c_1}+20 x^6}+e^{3 c_1}-4 x^3}}-\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{\sqrt {-8 e^{3 c_1} x^3+e^{6 c_1}+20 x^6}+e^{3 c_1}-4 x^3}}{2 \sqrt [3]{2}}\right \},\left \{y(x)\to \frac {\left (1-i \sqrt {3}\right ) x^2}{2^{2/3} \sqrt [3]{\sqrt {-8 e^{3 c_1} x^3+e^{6 c_1}+20 x^6}+e^{3 c_1}-4 x^3}}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{\sqrt {-8 e^{3 c_1} x^3+e^{6 c_1}+20 x^6}+e^{3 c_1}-4 x^3}}{2 \sqrt [3]{2}}\right \}\right \} \]
Maple: cpu = 0.125 (sec), leaf count = 417 \[ \left \{ y \left ( x \right ) ={1 \left ( {\frac {1}{2}\sqrt [3]{4-16\,{x }^{3}{{\it \_C1}}^{3/2}+4\,\sqrt {20\,{{\it \_C1}}^{3}{x}^{6}-8\,{x}^{ 3}{{\it \_C1}}^{3/2}+1}}}-2\,{\frac {{x}^{2}{\it \_C1}}{\sqrt [3]{4-16 \,{x}^{3}{{\it \_C1}}^{3/2}+4\,\sqrt {20\,{{\it \_C1}}^{3}{x}^{6}-8\,{ x}^{3}{{\it \_C1}}^{3/2}+1}}}} \right ) {\frac {1}{\sqrt {{\it \_C1}}}} },y \left ( x \right ) ={1 \left ( -{\frac {1}{4}\sqrt [3]{4-16\,{x}^{3}{ {\it \_C1}}^{3/2}+4\,\sqrt {20\,{{\it \_C1}}^{3}{x}^{6}-8\,{x}^{3}{{ \it \_C1}}^{3/2}+1}}}+{{x}^{2}{\it \_C1}{\frac {1}{\sqrt [3]{4-16\,{x} ^{3}{{\it \_C1}}^{3/2}+4\,\sqrt {20\,{{\it \_C1}}^{3}{x}^{6}-8\,{x}^{3 }{{\it \_C1}}^{3/2}+1}}}}}-{\frac {i}{2}}\sqrt {3} \left ( {\frac {1}{2 }\sqrt [3]{4-16\,{x}^{3}{{\it \_C1}}^{3/2}+4\,\sqrt {20\,{{\it \_C1}}^ {3}{x}^{6}-8\,{x}^{3}{{\it \_C1}}^{3/2}+1}}}+2\,{\frac {{x}^{2}{\it \_C1}}{\sqrt [3]{4-16\,{x}^{3}{{\it \_C1}}^{3/2}+4\,\sqrt {20\,{{\it \_C1}}^{3}{x}^{6}-8\,{x}^{3}{{\it \_C1}}^{3/2}+1}}}} \right ) \right ) {\frac {1}{\sqrt {{\it \_C1}}}}},y \left ( x \right ) ={1 \left ( -{ \frac {1}{4}\sqrt [3]{4-16\,{x}^{3}{{\it \_C1}}^{3/2}+4\,\sqrt {20\,{{ \it \_C1}}^{3}{x}^{6}-8\,{x}^{3}{{\it \_C1}}^{3/2}+1}}}+{{x}^{2}{\it \_C1}{\frac {1}{\sqrt [3]{4-16\,{x}^{3}{{\it \_C1}}^{3/2}+4\,\sqrt {20 \,{{\it \_C1}}^{3}{x}^{6}-8\,{x}^{3}{{\it \_C1}}^{3/2}+1}}}}}+{\frac { i}{2}}\sqrt {3} \left ( {\frac {1}{2}\sqrt [3]{4-16\,{x}^{3}{{\it \_C1} }^{3/2}+4\,\sqrt {20\,{{\it \_C1}}^{3}{x}^{6}-8\,{x}^{3}{{\it \_C1}}^{ 3/2}+1}}}+2\,{\frac {{x}^{2}{\it \_C1}}{\sqrt [3]{4-16\,{x}^{3}{{\it \_C1}}^{3/2}+4\,\sqrt {20\,{{\it \_C1}}^{3}{x}^{6}-8\,{x}^{3}{{\it \_C1}}^{3/2}+1}}}} \right ) \right ) {\frac {1}{\sqrt {{\it \_C1}}}}} \right \} \]