3.33   ODE No. 33

ddxy(x)(ddxf(x))(y(x))2g(x)+ddxg(x)f(x)=0

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

Mathematica: cpu = 26.354347 (sec), leaf count = 157 Solve[1y(x)(1(f(x)K[2]+g(x))21x(2(K[2]2f(K[1])f(K[1])g(K[1])g(K[1]))g(K[1])(K[2]f(K[1])+g(K[1]))32K[2]f(K[1])g(K[1])(K[2]f(K[1])+g(K[1]))2)dK[1])dK[2]+1xy(x)2f(K[1])f(K[1])g(K[1])g(K[1])f(K[1])g(K[1])(y(x)f(K[1])+g(K[1]))2dK[1]=c1,y(x)]

Maple: cpu = 0.343 (sec), leaf count = 57 {y(x)=1(f(x))2(g(x)f(x)ddxf(x)g(x)(f(x))2dx+g(x)f(x)_C1+1)(_C1+ddxf(x)g(x)(f(x))2dx)1}

Sage: cpu = 0.1 (sec), leaf count = 0 [[[y(x)=0,uD[0](f)(x)2D[0](g)(x)f(x)g(x)2=0]],riccati]