\[ \boxed { \left ( {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) \right ) ^{2}-2\,x{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) +y \left ( x \right ) =0} \]
Mathematica: cpu = 0.420553 (sec), leaf count = 1757 \[ \left \{\left \{y(x)\to \frac {x^2}{4}+\frac {1}{4} \sqrt [3]{x^6-20 \cosh \left (3 c_1\right ) x^3-20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {-\cosh \left (3 c_1\right ) x^9-\sinh \left (3 c_1\right ) x^9+3 \cosh \left (6 c_1\right ) x^6+3 \sinh \left (6 c_1\right ) x^6-3 \cosh \left (9 c_1\right ) x^3-3 \sinh \left (9 c_1\right ) x^3+\cosh \left (12 c_1\right )+\sinh \left (12 c_1\right )}}-\frac {-9 x^4-72 \cosh \left (3 c_1\right ) x-72 \sinh \left (3 c_1\right ) x}{36 \sqrt [3]{x^6-20 \cosh \left (3 c_1\right ) x^3-20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {-\cosh \left (3 c_1\right ) x^9-\sinh \left (3 c_1\right ) x^9+3 \cosh \left (6 c_1\right ) x^6+3 \sinh \left (6 c_1\right ) x^6-3 \cosh \left (9 c_1\right ) x^3-3 \sinh \left (9 c_1\right ) x^3+\cosh \left (12 c_1\right )+\sinh \left (12 c_1\right )}}}\right \},\left \{y(x)\to \frac {x^2}{4}-\frac {1}{8} \left (1-i \sqrt {3}\right ) \sqrt [3]{x^6-20 \cosh \left (3 c_1\right ) x^3-20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {-\cosh \left (3 c_1\right ) x^9-\sinh \left (3 c_1\right ) x^9+3 \cosh \left (6 c_1\right ) x^6+3 \sinh \left (6 c_1\right ) x^6-3 \cosh \left (9 c_1\right ) x^3-3 \sinh \left (9 c_1\right ) x^3+\cosh \left (12 c_1\right )+\sinh \left (12 c_1\right )}}+\frac {\left (1+i \sqrt {3}\right ) \left (-9 x^4-72 \cosh \left (3 c_1\right ) x-72 \sinh \left (3 c_1\right ) x\right )}{72 \sqrt [3]{x^6-20 \cosh \left (3 c_1\right ) x^3-20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {-\cosh \left (3 c_1\right ) x^9-\sinh \left (3 c_1\right ) x^9+3 \cosh \left (6 c_1\right ) x^6+3 \sinh \left (6 c_1\right ) x^6-3 \cosh \left (9 c_1\right ) x^3-3 \sinh \left (9 c_1\right ) x^3+\cosh \left (12 c_1\right )+\sinh \left (12 c_1\right )}}}\right \},\left \{y(x)\to \frac {x^2}{4}-\frac {1}{8} \left (1+i \sqrt {3}\right ) \sqrt [3]{x^6-20 \cosh \left (3 c_1\right ) x^3-20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {-\cosh \left (3 c_1\right ) x^9-\sinh \left (3 c_1\right ) x^9+3 \cosh \left (6 c_1\right ) x^6+3 \sinh \left (6 c_1\right ) x^6-3 \cosh \left (9 c_1\right ) x^3-3 \sinh \left (9 c_1\right ) x^3+\cosh \left (12 c_1\right )+\sinh \left (12 c_1\right )}}+\frac {\left (1-i \sqrt {3}\right ) \left (-9 x^4-72 \cosh \left (3 c_1\right ) x-72 \sinh \left (3 c_1\right ) x\right )}{72 \sqrt [3]{x^6-20 \cosh \left (3 c_1\right ) x^3-20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {-\cosh \left (3 c_1\right ) x^9-\sinh \left (3 c_1\right ) x^9+3 \cosh \left (6 c_1\right ) x^6+3 \sinh \left (6 c_1\right ) x^6-3 \cosh \left (9 c_1\right ) x^3-3 \sinh \left (9 c_1\right ) x^3+\cosh \left (12 c_1\right )+\sinh \left (12 c_1\right )}}}\right \},\left \{y(x)\to \frac {x^2}{4}+\frac {1}{4} \sqrt [3]{x^6+20 \cosh \left (3 c_1\right ) x^3+20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {\cosh \left (3 c_1\right ) x^9+\sinh \left (3 c_1\right ) x^9+3 \cosh \left (6 c_1\right ) x^6+3 \sinh \left (6 c_1\right ) x^6+3 \cosh \left (9 c_1\right ) x^3+3 \sinh \left (9 c_1\right ) x^3+\cosh \left (12 c_1\right )+\sinh \left (12 c_1\right )}}-\frac {-9 x^4+72 \cosh \left (3 c_1\right ) x+72 \sinh \left (3 c_1\right ) x}{36 \sqrt [3]{x^6+20 \cosh \left (3 c_1\right ) x^3+20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {\cosh \left (3 c_1\right ) x^9+\sinh \left (3 c_1\right ) x^9+3 \cosh \left (6 c_1\right ) x^6+3 \sinh \left (6 c_1\right ) x^6+3 \cosh \left (9 c_1\right ) x^3+3 \sinh \left (9 c_1\right ) x^3+\cosh \left (12 c_1\right )+\sinh \left (12 c_1\right )}}}\right \},\left \{y(x)\to \frac {x^2}{4}-\frac {1}{8} \left (1-i \sqrt {3}\right ) \sqrt [3]{x^6+20 \cosh \left (3 c_1\right ) x^3+20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {\cosh \left (3 c_1\right ) x^9+\sinh \left (3 c_1\right ) x^9+3 \cosh \left (6 c_1\right ) x^6+3 \sinh \left (6 c_1\right ) x^6+3 \cosh \left (9 c_1\right ) x^3+3 \sinh \left (9 c_1\right ) x^3+\cosh \left (12 c_1\right )+\sinh \left (12 c_1\right )}}+\frac {\left (1+i \sqrt {3}\right ) \left (-9 x^4+72 \cosh \left (3 c_1\right ) x+72 \sinh \left (3 c_1\right ) x\right )}{72 \sqrt [3]{x^6+20 \cosh \left (3 c_1\right ) x^3+20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {\cosh \left (3 c_1\right ) x^9+\sinh \left (3 c_1\right ) x^9+3 \cosh \left (6 c_1\right ) x^6+3 \sinh \left (6 c_1\right ) x^6+3 \cosh \left (9 c_1\right ) x^3+3 \sinh \left (9 c_1\right ) x^3+\cosh \left (12 c_1\right )+\sinh \left (12 c_1\right )}}}\right \},\left \{y(x)\to \frac {x^2}{4}-\frac {1}{8} \left (1+i \sqrt {3}\right ) \sqrt [3]{x^6+20 \cosh \left (3 c_1\right ) x^3+20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {\cosh \left (3 c_1\right ) x^9+\sinh \left (3 c_1\right ) x^9+3 \cosh \left (6 c_1\right ) x^6+3 \sinh \left (6 c_1\right ) x^6+3 \cosh \left (9 c_1\right ) x^3+3 \sinh \left (9 c_1\right ) x^3+\cosh \left (12 c_1\right )+\sinh \left (12 c_1\right )}}+\frac {\left (1-i \sqrt {3}\right ) \left (-9 x^4+72 \cosh \left (3 c_1\right ) x+72 \sinh \left (3 c_1\right ) x\right )}{72 \sqrt [3]{x^6+20 \cosh \left (3 c_1\right ) x^3+20 \sinh \left (3 c_1\right ) x^3-8 \cosh \left (6 c_1\right )-8 \sinh \left (6 c_1\right )+8 \sqrt {\cosh \left (3 c_1\right ) x^9+\sinh \left (3 c_1\right ) x^9+3 \cosh \left (6 c_1\right ) x^6+3 \sinh \left (6 c_1\right ) x^6+3 \cosh \left (9 c_1\right ) x^3+3 \sinh \left (9 c_1\right ) x^3+\cosh \left (12 c_1\right )+\sinh \left (12 c_1\right )}}}\right \}\right \} \]
Maple: cpu = 0.405 (sec), leaf count = 656 \[ \left \{ y \left ( x \right ) =- \left ( {\frac {1}{2}\sqrt [3]{-6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+9\,{{\it \_C1}}^{2}}}} +{\frac {{x}^{2}}{2}{\frac {1}{\sqrt [3]{-6\,{\it \_C1}+{x}^{3}+2\, \sqrt {-3\,{\it \_C1}\,{x}^{3}+9\,{{\it \_C1}}^{2}}}}}}+{\frac {x}{2}} \right ) ^{2}+2\,x \left ( 1/2\,\sqrt [3]{-6\,{\it \_C1}+{x}^{3}+2\, \sqrt {-3\,{\it \_C1}\,{x}^{3}+9\,{{\it \_C1}}^{2}}}+1/2\,{\frac {{x}^ {2}}{\sqrt [3]{-6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{\it \_C1}\,{x}^{3 }+9\,{{\it \_C1}}^{2}}}}}+x/2 \right ) ,y \left ( x \right ) =- \left ( -{ \frac {1}{4}\sqrt [3]{-6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{\it \_C1} \,{x}^{3}+9\,{{\it \_C1}}^{2}}}}-{\frac {{x}^{2}}{4}{\frac {1}{\sqrt [ 3]{-6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+9\,{{\it \_C1}}^{2}}}}}}+{\frac {x}{2}}-{\frac {i}{2}}\sqrt {3} \left ( {\frac { 1}{2}\sqrt [3]{-6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{\it \_C1}\,{x}^{3 }+9\,{{\it \_C1}}^{2}}}}-{\frac {{x}^{2}}{2}{\frac {1}{\sqrt [3]{-6\,{ \it \_C1}+{x}^{3}+2\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+9\,{{\it \_C1}}^{2 }}}}}} \right ) \right ) ^{2}+2\,x \left ( -1/4\,\sqrt [3]{-6\,{\it \_C1 }+{x}^{3}+2\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+9\,{{\it \_C1}}^{2}}}-1/4 \,{\frac {{x}^{2}}{\sqrt [3]{-6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{ \it \_C1}\,{x}^{3}+9\,{{\it \_C1}}^{2}}}}}+x/2-i/2\sqrt {3} \left ( 1/2 \,\sqrt [3]{-6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+9 \,{{\it \_C1}}^{2}}}-1/2\,{\frac {{x}^{2}}{\sqrt [3]{-6\,{\it \_C1}+{x }^{3}+2\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+9\,{{\it \_C1}}^{2}}}}} \right ) \right ) ,y \left ( x \right ) =- \left ( -{\frac {1}{4}\sqrt [3 ]{-6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+9\,{{\it \_C1}}^{2}}}}-{\frac {{x}^{2}}{4}{\frac {1}{\sqrt [3]{-6\,{\it \_C1}+{ x}^{3}+2\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+9\,{{\it \_C1}}^{2}}}}}}+{ \frac {x}{2}}+{\frac {i}{2}}\sqrt {3} \left ( {\frac {1}{2}\sqrt [3]{-6 \,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+9\,{{\it \_C1}} ^{2}}}}-{\frac {{x}^{2}}{2}{\frac {1}{\sqrt [3]{-6\,{\it \_C1}+{x}^{3} +2\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+9\,{{\it \_C1}}^{2}}}}}} \right ) \right ) ^{2}+2\,x \left ( -1/4\,\sqrt [3]{-6\,{\it \_C1}+{x}^{3}+2\, \sqrt {-3\,{\it \_C1}\,{x}^{3}+9\,{{\it \_C1}}^{2}}}-1/4\,{\frac {{x}^ {2}}{\sqrt [3]{-6\,{\it \_C1}+{x}^{3}+2\,\sqrt {-3\,{\it \_C1}\,{x}^{3 }+9\,{{\it \_C1}}^{2}}}}}+x/2+i/2\sqrt {3} \left ( 1/2\,\sqrt [3]{-6\,{ \it \_C1}+{x}^{3}+2\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+9\,{{\it \_C1}}^{2 }}}-1/2\,{\frac {{x}^{2}}{\sqrt [3]{-6\,{\it \_C1}+{x}^{3}+2\,\sqrt {- 3\,{\it \_C1}\,{x}^{3}+9\,{{\it \_C1}}^{2}}}}} \right ) \right ) \right \} \]