\[ \boxed { 3\, \left ( {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) \right ) ^{2}-2\,x{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) +y \left ( x \right ) =0} \]
Mathematica: cpu = 0.353545 (sec), leaf count = 1093 \[ \left \{\left \{y(x)\to \text {Root}\left [-16 e^{6 c_1} x^6+3 \text {$\#$1}^4 x^4+144 e^{6 c_1} \text {$\#$1} x^4-24 \text {$\#$1}^5 x^2-378 e^{6 c_1} \text {$\#$1}^2 x^2+243 e^{12 c_1}+48 \text {$\#$1}^6+216 e^{6 c_1} \text {$\#$1}^3\& ,1\right ]\right \},\left \{y(x)\to \text {Root}\left [-16 e^{6 c_1} x^6+3 \text {$\#$1}^4 x^4+144 e^{6 c_1} \text {$\#$1} x^4-24 \text {$\#$1}^5 x^2-378 e^{6 c_1} \text {$\#$1}^2 x^2+243 e^{12 c_1}+48 \text {$\#$1}^6+216 e^{6 c_1} \text {$\#$1}^3\& ,2\right ]\right \},\left \{y(x)\to \text {Root}\left [-16 e^{6 c_1} x^6+3 \text {$\#$1}^4 x^4+144 e^{6 c_1} \text {$\#$1} x^4-24 \text {$\#$1}^5 x^2-378 e^{6 c_1} \text {$\#$1}^2 x^2+243 e^{12 c_1}+48 \text {$\#$1}^6+216 e^{6 c_1} \text {$\#$1}^3\& ,3\right ]\right \},\left \{y(x)\to \text {Root}\left [-16 e^{6 c_1} x^6+3 \text {$\#$1}^4 x^4+144 e^{6 c_1} \text {$\#$1} x^4-24 \text {$\#$1}^5 x^2-378 e^{6 c_1} \text {$\#$1}^2 x^2+243 e^{12 c_1}+48 \text {$\#$1}^6+216 e^{6 c_1} \text {$\#$1}^3\& ,4\right ]\right \},\left \{y(x)\to \text {Root}\left [-16 e^{6 c_1} x^6+3 \text {$\#$1}^4 x^4+144 e^{6 c_1} \text {$\#$1} x^4-24 \text {$\#$1}^5 x^2-378 e^{6 c_1} \text {$\#$1}^2 x^2+243 e^{12 c_1}+48 \text {$\#$1}^6+216 e^{6 c_1} \text {$\#$1}^3\& ,5\right ]\right \},\left \{y(x)\to \text {Root}\left [-16 e^{6 c_1} x^6+3 \text {$\#$1}^4 x^4+144 e^{6 c_1} \text {$\#$1} x^4-24 \text {$\#$1}^5 x^2-378 e^{6 c_1} \text {$\#$1}^2 x^2+243 e^{12 c_1}+48 \text {$\#$1}^6+216 e^{6 c_1} \text {$\#$1}^3\& ,6\right ]\right \},\left \{y(x)\to \text {Root}\left [-16 e^{6 c_1} x^6+243 \text {$\#$1}^4 x^4+144 e^{6 c_1} \text {$\#$1} x^4-1944 \text {$\#$1}^5 x^2-378 e^{6 c_1} \text {$\#$1}^2 x^2+3 e^{12 c_1}+3888 \text {$\#$1}^6+216 e^{6 c_1} \text {$\#$1}^3\& ,1\right ]\right \},\left \{y(x)\to \text {Root}\left [-16 e^{6 c_1} x^6+243 \text {$\#$1}^4 x^4+144 e^{6 c_1} \text {$\#$1} x^4-1944 \text {$\#$1}^5 x^2-378 e^{6 c_1} \text {$\#$1}^2 x^2+3 e^{12 c_1}+3888 \text {$\#$1}^6+216 e^{6 c_1} \text {$\#$1}^3\& ,2\right ]\right \},\left \{y(x)\to \text {Root}\left [-16 e^{6 c_1} x^6+243 \text {$\#$1}^4 x^4+144 e^{6 c_1} \text {$\#$1} x^4-1944 \text {$\#$1}^5 x^2-378 e^{6 c_1} \text {$\#$1}^2 x^2+3 e^{12 c_1}+3888 \text {$\#$1}^6+216 e^{6 c_1} \text {$\#$1}^3\& ,3\right ]\right \},\left \{y(x)\to \text {Root}\left [-16 e^{6 c_1} x^6+243 \text {$\#$1}^4 x^4+144 e^{6 c_1} \text {$\#$1} x^4-1944 \text {$\#$1}^5 x^2-378 e^{6 c_1} \text {$\#$1}^2 x^2+3 e^{12 c_1}+3888 \text {$\#$1}^6+216 e^{6 c_1} \text {$\#$1}^3\& ,4\right ]\right \},\left \{y(x)\to \text {Root}\left [-16 e^{6 c_1} x^6+243 \text {$\#$1}^4 x^4+144 e^{6 c_1} \text {$\#$1} x^4-1944 \text {$\#$1}^5 x^2-378 e^{6 c_1} \text {$\#$1}^2 x^2+3 e^{12 c_1}+3888 \text {$\#$1}^6+216 e^{6 c_1} \text {$\#$1}^3\& ,5\right ]\right \},\left \{y(x)\to \text {Root}\left [-16 e^{6 c_1} x^6+243 \text {$\#$1}^4 x^4+144 e^{6 c_1} \text {$\#$1} x^4-1944 \text {$\#$1}^5 x^2-378 e^{6 c_1} \text {$\#$1}^2 x^2+3 e^{12 c_1}+3888 \text {$\#$1}^6+216 e^{6 c_1} \text {$\#$1}^3\& ,6\right ]\right \}\right \} \]
Maple: cpu = 0.452 (sec), leaf count = 656 \[ \left \{ y \left ( x \right ) =-3\, \left ( 1/6\,\sqrt [3]{-54\,{\it \_C1 }+{x}^{3}+6\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+81\,{{\it \_C1}}^{2}}}+1/6 \,{\frac {{x}^{2}}{\sqrt [3]{-54\,{\it \_C1}+{x}^{3}+6\,\sqrt {-3\,{ \it \_C1}\,{x}^{3}+81\,{{\it \_C1}}^{2}}}}}+x/6 \right ) ^{2}+2\,x \left ( 1/6\,\sqrt [3]{-54\,{\it \_C1}+{x}^{3}+6\,\sqrt {-3\,{\it \_C1 }\,{x}^{3}+81\,{{\it \_C1}}^{2}}}+1/6\,{\frac {{x}^{2}}{\sqrt [3]{-54 \,{\it \_C1}+{x}^{3}+6\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+81\,{{\it \_C1} }^{2}}}}}+x/6 \right ) ,y \left ( x \right ) =-3\, \left ( -1/12\,\sqrt [3 ]{-54\,{\it \_C1}+{x}^{3}+6\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+81\,{{\it \_C1}}^{2}}}-1/12\,{\frac {{x}^{2}}{\sqrt [3]{-54\,{\it \_C1}+{x}^{3}+ 6\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+81\,{{\it \_C1}}^{2}}}}}+x/6-i/2 \sqrt {3} \left ( 1/6\,\sqrt [3]{-54\,{\it \_C1}+{x}^{3}+6\,\sqrt {-3\, {\it \_C1}\,{x}^{3}+81\,{{\it \_C1}}^{2}}}-1/6\,{\frac {{x}^{2}}{ \sqrt [3]{-54\,{\it \_C1}+{x}^{3}+6\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+81 \,{{\it \_C1}}^{2}}}}} \right ) \right ) ^{2}+2\,x \left ( -1/12\,\sqrt [3]{-54\,{\it \_C1}+{x}^{3}+6\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+81\,{{ \it \_C1}}^{2}}}-1/12\,{\frac {{x}^{2}}{\sqrt [3]{-54\,{\it \_C1}+{x}^ {3}+6\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+81\,{{\it \_C1}}^{2}}}}}+x/6-i/2 \sqrt {3} \left ( 1/6\,\sqrt [3]{-54\,{\it \_C1}+{x}^{3}+6\,\sqrt {-3\, {\it \_C1}\,{x}^{3}+81\,{{\it \_C1}}^{2}}}-1/6\,{\frac {{x}^{2}}{ \sqrt [3]{-54\,{\it \_C1}+{x}^{3}+6\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+81 \,{{\it \_C1}}^{2}}}}} \right ) \right ) ,y \left ( x \right ) =-3\, \left ( -1/12\,\sqrt [3]{-54\,{\it \_C1}+{x}^{3}+6\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+81\,{{\it \_C1}}^{2}}}-1/12\,{\frac {{x}^{2}}{\sqrt [3] {-54\,{\it \_C1}+{x}^{3}+6\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+81\,{{\it \_C1}}^{2}}}}}+x/6+i/2\sqrt {3} \left ( 1/6\,\sqrt [3]{-54\,{\it \_C1}+ {x}^{3}+6\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+81\,{{\it \_C1}}^{2}}}-1/6\, {\frac {{x}^{2}}{\sqrt [3]{-54\,{\it \_C1}+{x}^{3}+6\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+81\,{{\it \_C1}}^{2}}}}} \right ) \right ) ^{2}+2\,x \left ( -1/12\,\sqrt [3]{-54\,{\it \_C1}+{x}^{3}+6\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+81\,{{\it \_C1}}^{2}}}-1/12\,{\frac {{x}^{2}}{\sqrt [3] {-54\,{\it \_C1}+{x}^{3}+6\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+81\,{{\it \_C1}}^{2}}}}}+x/6+i/2\sqrt {3} \left ( 1/6\,\sqrt [3]{-54\,{\it \_C1}+ {x}^{3}+6\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+81\,{{\it \_C1}}^{2}}}-1/6\, {\frac {{x}^{2}}{\sqrt [3]{-54\,{\it \_C1}+{x}^{3}+6\,\sqrt {-3\,{\it \_C1}\,{x}^{3}+81\,{{\it \_C1}}^{2}}}}} \right ) \right ) \right \} \]