\[ \boxed { \left ( 3\,x+1 \right ) \left ( {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) \right ) ^{2}-3\, \left ( y \left ( x \right ) +2 \right ) {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) +9=0} \]
Mathematica: cpu = 0.392050 (sec), leaf count = 310 \[ \left \{\left \{y(x)\to -\frac {\sqrt {9 x^2 \sinh \left (c_1\right )+9 x^2 \cosh \left (c_1\right )-210 x \sinh \left (c_1\right )+6 x \sinh \left (2 c_1\right )-210 x \cosh \left (c_1\right )+6 x \cosh \left (2 c_1\right )+1225 \sinh \left (c_1\right )-70 \sinh \left (2 c_1\right )+\sinh \left (3 c_1\right )+1225 \cosh \left (c_1\right )-70 \cosh \left (2 c_1\right )+\cosh \left (3 c_1\right )}}{\sinh \left (c_1\right )+\cosh \left (c_1\right )-36}+\frac {18 x}{\sinh \left (c_1\right )+\cosh \left (c_1\right )-36}-\frac {8 \cosh \left (c_1\right )}{\sinh \left (c_1\right )+\cosh \left (c_1\right )-36}-\frac {8 \sinh \left (c_1\right )}{\sinh \left (c_1\right )+\cosh \left (c_1\right )-36}+\frac {294}{\sinh \left (c_1\right )+\cosh \left (c_1\right )-36}\right \},\left \{y(x)\to \frac {\sqrt {9 x^2 \sinh \left (c_1\right )+9 x^2 \cosh \left (c_1\right )-210 x \sinh \left (c_1\right )+6 x \sinh \left (2 c_1\right )-210 x \cosh \left (c_1\right )+6 x \cosh \left (2 c_1\right )+1225 \sinh \left (c_1\right )-70 \sinh \left (2 c_1\right )+\sinh \left (3 c_1\right )+1225 \cosh \left (c_1\right )-70 \cosh \left (2 c_1\right )+\cosh \left (3 c_1\right )}}{\sinh \left (c_1\right )+\cosh \left (c_1\right )-36}+\frac {18 x}{\sinh \left (c_1\right )+\cosh \left (c_1\right )-36}-\frac {8 \cosh \left (c_1\right )}{\sinh \left (c_1\right )+\cosh \left (c_1\right )-36}-\frac {8 \sinh \left (c_1\right )}{\sinh \left (c_1\right )+\cosh \left (c_1\right )-36}+\frac {294}{\sinh \left (c_1\right )+\cosh \left (c_1\right )-36}\right \}\right \} \]
Maple: cpu = 0.546 (sec), leaf count = 49 \[ \left \{ y \left ( x \right ) =-2-2\,\sqrt {3\,x+1},y \left ( x \right ) = -2+2\,\sqrt {3\,x+1},y \left ( x \right ) ={\it \_C1}\,x+{\frac {{{\it \_C1}}^{2}-6\,{\it \_C1}+9}{3\,{\it \_C1}}} \right \} \]