\[ \boxed { {x}^{4} \left ( {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) \right ) ^{2}-x{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) -y \left ( x \right ) =0} \]
Mathematica: cpu = 0.948120 (sec), leaf count = 410 \[ \left \{\text {Solve}\left [\frac {x \sqrt {4 x^2 y(x)+1} \left (\log (x)-\log \left (\sqrt {4 x^2 y(x)+1}+1\right )\right )}{\sqrt {4 x^4 y(x)+x^2}}+\frac {x \sqrt {4 x^2 y(x)+1} \log (y(x))-x \sqrt {4 x^2 y(x)+1} \log \left (4 x^2 y(x)+1\right )+\sqrt {4 x^4 y(x)+x^2} \log \left (\frac {1}{4 x^2 y(x)}+1\right )-\sqrt {4 x^4 y(x)+x^2} \log \left (4 x^2 y(x)+1\right )+x \sqrt {4 x^2 y(x)+1} \log \left (4 x^3 y(x)+x\right )}{2 \sqrt {4 x^4 y(x)+x^2}}=c_1,y(x)\right ],\text {Solve}\left [-\frac {x \sqrt {4 x^2 y(x)+1} \left (\log (x)-\log \left (\sqrt {4 x^2 y(x)+1}+1\right )\right )}{\sqrt {4 x^4 y(x)+x^2}}-\frac {x \sqrt {4 x^2 y(x)+1} \log (y(x))-x \sqrt {4 x^2 y(x)+1} \log \left (4 x^2 y(x)+1\right )-\sqrt {4 x^4 y(x)+x^2} \log \left (\frac {1}{4 x^2 y(x)}+1\right )+\sqrt {4 x^4 y(x)+x^2} \log \left (4 x^2 y(x)+1\right )+x \sqrt {4 x^2 y(x)+1} \log \left (4 x^3 y(x)+x\right )}{2 \sqrt {4 x^4 y(x)+x^2}}=c_1,y(x)\right ]\right \} \]
Maple: cpu = 1.186 (sec), leaf count = 135 \[ \left \{ y \left ( x \right ) =-{\frac {1}{4\,{x}^{2}}},y \left ( x \right ) ={\frac {-{\it \_C1}\, \left ( -{\it \_C1}-2\,ix \right ) -{{ \it \_C1}}^{2}-2\,{x}^{2}}{2\,{{\it \_C1}}^{2}{x}^{2}}},y \left ( x \right ) ={\frac {-{\it \_C1}\, \left ( -{\it \_C1}+2\,ix \right ) -{{ \it \_C1}}^{2}-2\,{x}^{2}}{2\,{{\it \_C1}}^{2}{x}^{2}}},y \left ( x \right ) ={\frac {{\it \_C1}\, \left ( {\it \_C1}-2\,ix \right ) -2\,{x} ^{2}-{{\it \_C1}}^{2}}{2\,{{\it \_C1}}^{2}{x}^{2}}},y \left ( x \right ) ={\frac {{\it \_C1}\, \left ( {\it \_C1}+2\,ix \right ) -2\,{x} ^{2}-{{\it \_C1}}^{2}}{2\,{{\it \_C1}}^{2}{x}^{2}}} \right \} \]