\[ \boxed { 4\,y \left ( x \right ) \left ( {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) \right ) ^{2}+2\,x{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) -y \left ( x \right ) =0} \]
Mathematica: cpu = 0.097512 (sec), leaf count = 205 \[ \left \{\left \{y(x)\to -\frac {1}{2} e^{2 c_1} \sqrt {e^{4 c_1}-2 x}\right \},\left \{y(x)\to \frac {1}{2} e^{2 c_1} \sqrt {e^{4 c_1}-2 x}\right \},\left \{y(x)\to -\frac {1}{2} \left (\sinh \left (2 c_1\right )+\cosh \left (2 c_1\right )\right ) \sqrt {\sinh \left (4 c_1\right )+\cosh \left (4 c_1\right )-2 x}\right \},\left \{y(x)\to \frac {1}{2} \left (\sinh \left (2 c_1\right )+\cosh \left (2 c_1\right )\right ) \sqrt {\sinh \left (4 c_1\right )+\cosh \left (4 c_1\right )-2 x}\right \},\left \{y(x)\to -\frac {1}{2} \left (\sinh \left (2 c_1\right )+\cosh \left (2 c_1\right )\right ) \sqrt {\sinh \left (4 c_1\right )+\cosh \left (4 c_1\right )+2 x}\right \},\left \{y(x)\to \frac {1}{2} \left (\sinh \left (2 c_1\right )+\cosh \left (2 c_1\right )\right ) \sqrt {\sinh \left (4 c_1\right )+\cosh \left (4 c_1\right )+2 x}\right \}\right \} \]
Maple: cpu = 0.936 (sec), leaf count = 69 \[ \left \{ y \left ( x \right ) =\sqrt {{{\it \_C1}}^{2}-{\it \_C1}\,x},y \left ( x \right ) =\sqrt {{{\it \_C1}}^{2}+{\it \_C1}\,x},y \left ( x \right ) =-{\frac {i}{2}}x,y \left ( x \right ) ={\frac {i}{2}}x,y \left ( x \right ) =-\sqrt {{{\it \_C1}}^{2}-{\it \_C1}\,x},y \left ( x \right ) =-\sqrt {{{\it \_C1}}^{2}+{\it \_C1}\,x} \right \} \]