\[ \boxed { \left ( 2\,xy \left ( x \right ) -{x}^{2} \right ) \left ( {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) \right ) ^{2}+2\,xy \left ( x \right ) {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) +2\,xy \left ( x \right ) - \left ( y \left ( x \right ) \right ) ^{2}=0} \]
Mathematica: cpu = 0.157020 (sec), leaf count = 71 \[ \left \{\left \{y(x)\to e^{\frac {c_1}{2}}-\sqrt {2 e^{\frac {c_1}{2}} x-x^2}\right \},\left \{y(x)\to \sqrt {2 e^{\frac {c_1}{2}} x-x^2}+e^{\frac {c_1}{2}}\right \}\right \} \]
Maple: cpu = 0.624 (sec), leaf count = 109 \[ \left \{ y \left ( x \right ) =0,y \left ( x \right ) ={\it RootOf} \left ( -2\,\ln \left ( x \right ) +\int ^{{\it \_Z}}\!{\frac {1}{{\it \_a}\, \left ( {{\it \_a}}^{2}+1 \right ) } \left ( -2\,{{\it \_a}}^{2}+ \sqrt {2\,{{\it \_a}}^{3}-4\,{{\it \_a}}^{2}+2\,{\it \_a}} \right ) }{d {\it \_a}}+2\,{\it \_C1} \right ) x,y \left ( x \right ) ={\it RootOf} \left ( -2\,\ln \left ( x \right ) -\int ^{{\it \_Z}}\!{\frac {1}{{\it \_a}\, \left ( {{\it \_a}}^{2}+1 \right ) } \left ( 2\,{{\it \_a}}^{2}+ \sqrt {2\,{{\it \_a}}^{3}-4\,{{\it \_a}}^{2}+2\,{\it \_a}} \right ) }{d {\it \_a}}+2\,{\it \_C1} \right ) x \right \} \]