[next] [prev] [prev-tail] [tail] [up]
(y(x))2(ddxy(x))2+2xy(x)ddxy(x)+a(y(x))2+bx+c=0
Mathematica: cpu = 0 (sec), leaf count = 0 Hanged
Maple: cpu = 2.621 (sec), leaf count = 5525 {y(x)=−12a(a+1)a(16RootOf(−bln(2ax−b+2x)+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_aa+2_C1a+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_a+2_C1)a5x2−16RootOf(−bln(2ax−b+2x)+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_aa+2_C1a+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_a+2_C1)a4bx+64RootOf(−bln(2ax−b+2x)+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_aa+2_C1a+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_a+2_C1)a4x2+4RootOf(−bln(2ax−b+2x)+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_aa+2_C1a+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_a+2_C1)a3b2−48RootOf(−bln(2ax−b+2x)+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_aa+2_C1a+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_a+2_C1)a3bx+96RootOf(−bln(2ax−b+2x)+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_aa+2_C1a+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_a+2_C1)a3x2+8RootOf(−bln(2ax−b+2x)+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_aa+2_C1a+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_a+2_C1)a2b2−48RootOf(−bln(2ax−b+2x)+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_aa+2_C1a+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_a+2_C1)a2bx+64RootOf(−bln(2ax−b+2x)+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_aa+2_C1a+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_a+2_C1)a2x2+4RootOf(−bln(2ax−b+2x)+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_aa+2_C1a+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_a+2_C1)ab2−16RootOf(−bln(2ax−b+2x)+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_aa+2_C1a+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_a+2_C1)abx+16RootOf(−bln(2ax−b+2x)+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_aa+2_C1a+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_a+2_C1)ax2−4a2bx−4a2c−4abx−8ac−b2−4c),y(x)=12a(a+1)a(16RootOf(−bln(2ax−b+2x)+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_aa+2_C1a+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_a+2_C1)a5x2−16RootOf(−bln(2ax−b+2x)+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_aa+2_C1a+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_a+2_C1)a4bx+64RootOf(−bln(2ax−b+2x)+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_aa+2_C1a+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_a+2_C1)a4x2+4RootOf(−bln(2ax−b+2x)+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_aa+2_C1a+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_a+2_C1)a3b2−48RootOf(−bln(2ax−b+2x)+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_aa+2_C1a+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_a+2_C1)a3bx+96RootOf(−bln(2ax−b+2x)+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_aa+2_C1a+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_a+2_C1)a3x2+8RootOf(−bln(2ax−b+2x)+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_aa+2_C1a+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_a+2_C1)a2b2−48RootOf(−bln(2ax−b+2x)+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_aa+2_C1a+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_a+2_C1)a2bx+64RootOf(−bln(2ax−b+2x)+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_aa+2_C1a+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_a+2_C1)a2x2+4RootOf(−bln(2ax−b+2x)+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_aa+2_C1a+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_a+2_C1)ab2−16RootOf(−bln(2ax−b+2x)+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_aa+2_C1a+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_a+2_C1)abx+16RootOf(−bln(2ax−b+2x)+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_aa+2_C1a+2∫_Z1/4b(4_aa3+12_aa2+12_aa+a2+4_a+3a+2)_a(−4_aa2+−e4a+1b(4_aa3+8_aa2+4_aa−1)e−2a+1b−8_aa−4_a−1)d_a+2_C1)ax2−4a2bx−4a2c−4abx−8ac−b2−4c)}
[next] [prev] [prev-tail] [front] [up]