3.512   ODE No. 512

(a((y(x))2+x2)3/2x2)(ddxy(x))2+2xy(x)ddxy(x)+a((y(x))2+x2)3/2(y(x))2=0

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

Mathematica: cpu = 4.686095 (sec), leaf count = 725 {Solve[tan1(xy(x))ia(x2+y(x)2)x2+y(x)2a(x2+y(x)2)(2(log(a3/2(3i2ax2+y(x)2+4ax2+y(x)2a(x2+y(x)2)i2)4ax2+y(x)2+4)log(3i2a3/2x2+y(x)24ax2+y(x)2a(x2+y(x)2)+i2a4ax2+y(x)2+4))+2log(2iax2+y(x)2+2ax2+y(x)2a(x2+y(x)2)+ia))2a(x2+y(x)2)2(x2+y(x)2a(x2+y(x)2))=c1,y(x)],Solve[tan1(xy(x))+ia(x2+y(x)2)x2+y(x)2a(x2+y(x)2)(2(log(a3/2(3i2ax2+y(x)2+4ax2+y(x)2a(x2+y(x)2)i2)4ax2+y(x)2+4)log(3i2a3/2x2+y(x)24ax2+y(x)2a(x2+y(x)2)+i2a4ax2+y(x)2+4))+2log(2iax2+y(x)2+2ax2+y(x)2a(x2+y(x)2)+ia))2a(x2+y(x)2)2(x2+y(x)2a(x2+y(x)2))=c1,y(x)]}

Maple: cpu = 40.935 (sec), leaf count = 135 {y(x)=x(tan(RootOf(_Z+x2((tan(_Z))2+1)(tan(_Z))212_a2(_aa21)(_aa+1)_a52a(_aa1)d_a+_C1)))1,y(x)=x(tan(RootOf(_Z+x2((tan(_Z))2+1)(tan(_Z))212_a2(_aa21)(_aa+1)_a52a(_aa1)d_a+_C1)))1}