[next] [prev] [prev-tail] [tail] [up]
ddxy(x)−(f(x))1−n(ddxg(x))(y(x))n(ag(x)+b)n−(ddxf(x))y(x)f(x)−f(x)ddxg(x)=0
Mathematica: cpu = 57.744833 (sec), leaf count = 95 Solve[∫1y(x)(f(x)−n(ag(x)+b)−n)1n1−(an)1nK[1]+K[1]n+1dK[1]=f(x)(ag(x)+b)log(ag(x)+b)(f(x)−n(ag(x)+b)−n)1na+c1,y(x)]
Maple: cpu = 0.062 (sec), leaf count = 281 {y(x)=(ag(x)+b)f(x)aRootOf(−∫_Z((ddxg(x))(ag(x)+b)−n(f(x))1−n)−n−1(f(x)ddxg(x))−2n+1((ddxg(x))3(ag(x)+b)−n−1(f(x))2−nan)nn−n_a((ddxg(x))(ag(x)+b)−n(f(x))1−n)−n−1(f(x)ddxg(x))−2n+1((ddxg(x))3(ag(x)+b)−n−1(f(x))2−nan)nn−n−((ddxg(x))(ag(x)+b)−n(f(x))1−n)−n−1(f(x)ddxg(x))−2n+1((ddxg(x))3(ag(x)+b)−n−1(f(x))2−nan)nn−n−_and_a−ln(ag(x)+b)+_C1)}
Sage: cpu = 69.46 (sec), leaf count = 0 [[∫−(ag(x)+b)nf(x)ny(x)D[0](f)(x)+y(x)nf(x)2D[0](g)(x)+(ag(x)+b)nf(x)n+2D[0](g)(x)(ag(x)+b)naf(x)n+1y(x)−(af(x)n+2g(x)+bf(x)n+2)(ag(x)+b)n−(af(x)2g(x)+bf(x)2)y(x)ndx+∫(ag(x)+b)nf(x)n−((ag(x)+b)naf(x)ny(x)−(af(x)n+1g(x)+bf(x)n+1)(ag(x)+b)n−(af(x)g(x)+bf(x))y(x)n)∫(ag(x)+b)2naf(x)2n+1D[0](g)(x)+(af(x)2ng(x)+bf(x)2n)(ag(x)+b)2nD[0](f)(x)−((an−a)(ag(x)+b)nf(x)n+1D[0](g)(x)+((an−a)f(x)ng(x)+(bn−b)f(x)n)(ag(x)+b)nD[0](f)(x))y(x)n(ag(x)+b)2na2f(x)2ny(x)2−2(a2f(x)2n+1g(x)+abf(x)2n+1)(ag(x)+b)2ny(x)+(a2f(x)2n+2g(x)2+2abf(x)2n+2g(x)+b2f(x)2n+2)(ag(x)+b)2n+(a2f(x)2g(x)2+2abf(x)2g(x)+b2f(x)2)y(x)2n−2((a2f(x)n+1g(x)+abf(x)n+1)(ag(x)+b)ny(x)−(a2f(x)n+2g(x)2+2abf(x)n+2g(x)+b2f(x)n+2)(ag(x)+b)n)y(x)ndx(ag(x)+b)naf(x)ny(x)−(af(x)n+1g(x)+bf(x)n+1)(ag(x)+b)n−(af(x)g(x)+bf(x))y(x)nd(y(x))=c],lie]
[next] [prev] [prev-tail] [front] [up]