3.53   ODE No. 53

ddxy(x)(f(x))1n(ddxg(x))(y(x))n(ag(x)+b)n(ddxf(x))y(x)f(x)f(x)ddxg(x)=0

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

Mathematica: cpu = 57.744833 (sec), leaf count = 95 Solve[1y(x)(f(x)n(ag(x)+b)n)1n1(an)1nK[1]+K[1]n+1dK[1]=f(x)(ag(x)+b)log(ag(x)+b)(f(x)n(ag(x)+b)n)1na+c1,y(x)]

Maple: cpu = 0.062 (sec), leaf count = 281 {y(x)=(ag(x)+b)f(x)aRootOf(_Z((ddxg(x))(ag(x)+b)n(f(x))1n)n1(f(x)ddxg(x))2n+1((ddxg(x))3(ag(x)+b)n1(f(x))2nan)nnn_a((ddxg(x))(ag(x)+b)n(f(x))1n)n1(f(x)ddxg(x))2n+1((ddxg(x))3(ag(x)+b)n1(f(x))2nan)nnn((ddxg(x))(ag(x)+b)n(f(x))1n)n1(f(x)ddxg(x))2n+1((ddxg(x))3(ag(x)+b)n1(f(x))2nan)nnn_and_aln(ag(x)+b)+_C1)}

Sage: cpu = 69.46 (sec), leaf count = 0 [[(ag(x)+b)nf(x)ny(x)D[0](f)(x)+y(x)nf(x)2D[0](g)(x)+(ag(x)+b)nf(x)n+2D[0](g)(x)(ag(x)+b)naf(x)n+1y(x)(af(x)n+2g(x)+bf(x)n+2)(ag(x)+b)n(af(x)2g(x)+bf(x)2)y(x)ndx+(ag(x)+b)nf(x)n((ag(x)+b)naf(x)ny(x)(af(x)n+1g(x)+bf(x)n+1)(ag(x)+b)n(af(x)g(x)+bf(x))y(x)n)(ag(x)+b)2naf(x)2n+1D[0](g)(x)+(af(x)2ng(x)+bf(x)2n)(ag(x)+b)2nD[0](f)(x)((ana)(ag(x)+b)nf(x)n+1D[0](g)(x)+((ana)f(x)ng(x)+(bnb)f(x)n)(ag(x)+b)nD[0](f)(x))y(x)n(ag(x)+b)2na2f(x)2ny(x)22(a2f(x)2n+1g(x)+abf(x)2n+1)(ag(x)+b)2ny(x)+(a2f(x)2n+2g(x)2+2abf(x)2n+2g(x)+b2f(x)2n+2)(ag(x)+b)2n+(a2f(x)2g(x)2+2abf(x)2g(x)+b2f(x)2)y(x)2n2((a2f(x)n+1g(x)+abf(x)n+1)(ag(x)+b)ny(x)(a2f(x)n+2g(x)2+2abf(x)n+2g(x)+b2f(x)n+2)(ag(x)+b)n)y(x)ndx(ag(x)+b)naf(x)ny(x)(af(x)n+1g(x)+bf(x)n+1)(ag(x)+b)n(af(x)g(x)+bf(x))y(x)nd(y(x))=c],lie]