\[ \boxed { {x}^{7} \left ( y \left ( x \right ) \right ) ^{2} \left ( {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) \right ) ^{3}- \left ( 3\,{x}^{6} \left ( y \left ( x \right ) \right ) ^{3}-1 \right ) \left ( {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) \right ) ^{2}+3\,{x}^{5} \left ( y \left ( x \right ) \right ) ^{4}{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) -{x}^{4} \left ( y \left ( x \right ) \right ) ^{5}=0} \]
Mathematica: cpu = 0 (sec), leaf count = 0 \[ \text {Hanged} \]
Maple: cpu = 0.686 (sec), leaf count = 7860 \[ \left \{ \int _{{\it \_b}}^{x}\!-{\frac {1}{{\it \_a}} \left ( 6\,\sqrt [3]{-108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12 \,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8}{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-24\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}+ \left ( -108\, \left ( y \left ( x \right ) \right ) ^{6}{{ \it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8 \right ) ^{{\frac {2}{3}}}-2 \,\sqrt [3]{-108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^ {12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8}+4 \right ) \left ( 18\,\sqrt [3]{- 108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\, \sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8}{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-24\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^ {3}+ \left ( -108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^ {12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8 \right ) ^{{\frac {2}{3}}}-2\,\sqrt [ 3]{-108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\, \sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8}+4 \right ) ^{-1}}\,{\rm d}{\it \_a}+\int ^{y \left ( x \right ) }\!6\,{{x}^{6}{{\it \_f}}^{2}\sqrt [3]{-108\,{{\it \_f}}^{6}{x}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{x}^{6}{{\it \_f}}^{ 3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{x}^{9}+72\,{x}^{6}{{\it \_f}}^{3}-8} \left ( 18\,\sqrt [3]{-108\,{{\it \_f}}^{6}{x}^{12}+12\,\sqrt {3} \sqrt {{\frac {27\,{x}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{ 5}{x}^{9}+72\,{x}^{6}{{\it \_f}}^{3}-8}{x}^{6}{{\it \_f}}^{3}-24\,{x}^ {6}{{\it \_f}}^{3}+ \left ( -108\,{{\it \_f}}^{6}{x}^{12}+12\,\sqrt {3} \sqrt {{\frac {27\,{x}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{ 5}{x}^{9}+72\,{x}^{6}{{\it \_f}}^{3}-8 \right ) ^{2/3}-2\,\sqrt [3]{- 108\,{{\it \_f}}^{6}{x}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{x}^{6}{{ \it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{x}^{9}+72\,{x}^{6}{{\it \_f}}^{3}-8}+4 \right ) ^{-1}}-\int _{{\it \_b}}^{x}\!-{\frac {1}{{\it \_a}} \left ( 2\,{{{\it \_a}}^{6}{{\it \_f}}^{3} \left ( -648\,{{\it \_f }}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2} }}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27 \,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3} \sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{ \it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3} \sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{ \it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{-2/3}}+18\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+ 12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{ \it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f }}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^{2}-72\,{{\it \_a}}^{6}{{\it \_f}} ^{2}+{\frac {2}{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{ \sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a} }^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{ 6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3 }-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{ \it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{ \it \_a}}^{6}{{\it \_f}}^{2} \right ) {\frac {1}{\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^ {6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{ {\it \_a}}^{6}{{\it \_f}}^{3}-8}}}}-{\frac {2}{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2} }}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27 \,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3} \sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{ \it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3} \sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{ \it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{-{\frac {2}{3}}}} \right ) \left ( 18\,\sqrt [3]{-108\,{{ \it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9} +72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^{3}- 24\,{{\it \_a}}^{6}{{\it \_f}}^{3}+ \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^ {3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{ {\it \_f}}^{3}-8 \right ) ^{{\frac {2}{3}}}-2\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^ {6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{ {\it \_a}}^{6}{{\it \_f}}^{3}-8}+4 \right ) ^{-1}}+{\frac {1}{{\it \_a} } \left ( 6\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{ \it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}{{ \it \_a}}^{6}{{\it \_f}}^{3}-24\,{{\it \_a}}^{6}{{\it \_f}}^{3}+ \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{ \frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{ 5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{{ \frac {2}{3}}}-2\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\, \sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f }}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}- 8}+4 \right ) \left ( 6\,{{{\it \_a}}^{6}{{\it \_f}}^{3} \left ( -648\,{ {\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}} ^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}} ^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{ \frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\, \sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f }}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3} \sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{ \it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{-2/3}}+54\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+ 12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{ \it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f }}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^{2}-72\,{{\it \_a}}^{6}{{\it \_f}} ^{2}+{\frac {2}{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{ \sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a} }^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{ 6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3 }-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{ \it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{ \it \_a}}^{6}{{\it \_f}}^{2} \right ) {\frac {1}{\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^ {6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{ {\it \_a}}^{6}{{\it \_f}}^{3}-8}}}}-{\frac {2}{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2} }}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27 \,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3} \sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{ \it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3} \sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{ \it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{-{\frac {2}{3}}}} \right ) \left ( 18\,\sqrt [3]{-108\,{{ \it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9} +72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^{3}- 24\,{{\it \_a}}^{6}{{\it \_f}}^{3}+ \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^ {3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{ {\it \_f}}^{3}-8 \right ) ^{{\frac {2}{3}}}-2\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^ {6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{ {\it \_a}}^{6}{{\it \_f}}^{3}-8}+4 \right ) ^{-2}}\,{\rm d}{\it \_a}{d{ \it \_f}}+{\it \_C1}=0,\int _{{\it \_b}}^{x}\!-{\frac {1}{{\it \_a}} \left ( 24\,i\sqrt {3}{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-12\,\sqrt [3]{-108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a} }^{6} \left ( y \left ( x \right ) \right ) ^{3}-8}{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-24\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}+i\sqrt {3} \left ( -108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{ \frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{ y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}- 8 \right ) ^{{\frac {2}{3}}}-4\,i\sqrt {3}+ \left ( -108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{ \frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{ y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}- 8 \right ) ^{{\frac {2}{3}}}+4\,\sqrt [3]{-108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27 \,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+ 72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8}+4 \right ) \left ( 24\,i\sqrt {3}{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-36\,\sqrt [3]{-108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72 \,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8}{{\it \_a} }^{6} \left ( y \left ( x \right ) \right ) ^{3}-24\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}+i\sqrt {3} \left ( -108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3} \sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5} {{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8 \right ) ^{{\frac {2}{3}}}-4\,i\sqrt {3}+ \left ( -108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3} \sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5} {{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8 \right ) ^{{\frac {2}{3}}}+4\,\sqrt [3]{-108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{ \frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{ y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}- 8}+4 \right ) ^{-1}}\,{\rm d}{\it \_a}+\int ^{y \left ( x \right ) }\!-12 \,{{x}^{6}{{\it \_f}}^{2}\sqrt [3]{-108\,{{\it \_f}}^{6}{x}^{12}+12\, \sqrt {3}\sqrt {{\frac {27\,{x}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{ \it \_f}}^{5}{x}^{9}+72\,{x}^{6}{{\it \_f}}^{3}-8} \left ( 24\,i\sqrt { 3}{x}^{6}{{\it \_f}}^{3}-36\,\sqrt [3]{-108\,{{\it \_f}}^{6}{x}^{12}+ 12\,\sqrt {3}\sqrt {{\frac {27\,{x}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}} {{\it \_f}}^{5}{x}^{9}+72\,{x}^{6}{{\it \_f}}^{3}-8}{x}^{6}{{\it \_f}} ^{3}-24\,{x}^{6}{{\it \_f}}^{3}+i\sqrt {3} \left ( -108\,{{\it \_f}}^{6 }{x}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{x}^{6}{{\it \_f}}^{3}-4}{{ \it \_f}}}}{{\it \_f}}^{5}{x}^{9}+72\,{x}^{6}{{\it \_f}}^{3}-8 \right ) ^{2/3}-4\,i\sqrt {3}+ \left ( -108\,{{\it \_f}}^{6}{x}^{12}+12 \,\sqrt {3}\sqrt {{\frac {27\,{x}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{ \it \_f}}^{5}{x}^{9}+72\,{x}^{6}{{\it \_f}}^{3}-8 \right ) ^{2/3}+4\, \sqrt [3]{-108\,{{\it \_f}}^{6}{x}^{12}+12\,\sqrt {3}\sqrt {{\frac {27 \,{x}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{x}^{9}+72\,{x} ^{6}{{\it \_f}}^{3}-8}+4 \right ) ^{-1}}-\int _{{\it \_b}}^{x}\!-{\frac {1}{{\it \_a}} \left ( 72\,i\sqrt {3}{{\it \_a}}^{6}{{\it \_f}}^{2}-4\, {{{\it \_a}}^{6}{{\it \_f}}^{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a} }^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27 \,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{ {\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{ \it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{ \it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}} ^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^ {6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{ {\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{-2/3}}-36\,\sqrt [3]{-108\,{ {\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9} +72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^{2}- 72\,{{\it \_a}}^{6}{{\it \_f}}^{2}+{{\frac {2\,i}{3}}\sqrt {3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{ \it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{ \it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{ \sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+ 60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{ \it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) {\frac {1}{\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a} }^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}- 4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{ \it \_f}}^{3}-8}}}}+{\frac {2}{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f} \,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6 }{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{ \it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}} ^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) {\frac {1}{\sqrt [3]{ -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\, {{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a }}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}}}}+{\frac {4}{3} \left ( - 648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{ \it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{ \it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{ \sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+ 60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{ \it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\, \sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f }}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}- 8 \right ) ^{-{\frac {2}{3}}}} \right ) \left ( 24\,i\sqrt {3}{{\it \_a} }^{6}{{\it \_f}}^{3}-36\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{ 12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{ {\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^{3}-24\,{{\it \_a}}^{6}{{\it \_f}}^{3}+i\sqrt {3} \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\, \sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f }}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}- 8 \right ) ^{{\frac {2}{3}}}-4\,i\sqrt {3}+ \left ( -108\,{{\it \_f}}^{6 }{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{ \it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{{\frac {2}{3}}}+4\,\sqrt [3]{-108 \,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{ \it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}} ^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}+4 \right ) ^{-1}}+{\frac {1 }{{\it \_a}} \left ( 24\,i\sqrt {3}{{\it \_a}}^{6}{{\it \_f}}^{3}-12\, \sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{ \frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{ 5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}{{\it \_a}}^{6} {{\it \_f}}^{3}-24\,{{\it \_a}}^{6}{{\it \_f}}^{3}+i\sqrt {3} \left ( - 108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{ {\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a} }^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{{\frac {2}{3}}}-4 \,i\sqrt {3}+ \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt { 3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{ \it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{{\frac {2}{3}}}+4\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a }}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3} -4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{ \it \_f}}^{3}-8}+4 \right ) \left ( 72\,i\sqrt {3}{{\it \_a}}^{6}{{\it \_f}}^{2}-12\,{{{\it \_a}}^{6}{{\it \_f}}^{3} \left ( -648\,{{\it \_f}} ^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2} }}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27 \,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3} \sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{ \it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3} \sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{ \it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{-2/3}}-108\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12} +12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{ \it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f }}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^{2}-72\,{{\it \_a}}^{6}{{\it \_f}} ^{2}+{{\frac {2\,i}{3}}\sqrt {3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a }}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27 \,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{ {\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{ \it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{ \it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}} ^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) {\frac {1}{\sqrt [3]{ -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\, {{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a }}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}}}}+{\frac {2}{3} \left ( - 648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{ \it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{ \it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{ \sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+ 60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{ \it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) {\frac {1}{\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a} }^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}- 4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{ \it \_f}}^{3}-8}}}}+{\frac {4}{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f} \,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6 }{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{ \it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}} ^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^ {6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{ {\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{-{\frac {2}{3}}}} \right ) \left ( 24\,i\sqrt {3}{{\it \_a}}^{6}{{\it \_f}}^{3}-36\,\sqrt [3]{- 108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{ {\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a} }^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^ {3}-24\,{{\it \_a}}^{6}{{\it \_f}}^{3}+i\sqrt {3} \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^ {6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{ {\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{{\frac {2}{3}}}-4\,i\sqrt {3 }+ \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{ \frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{ 5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{{ \frac {2}{3}}}+4\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\, \sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f }}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}- 8}+4 \right ) ^{-2}}\,{\rm d}{\it \_a}{d{\it \_f}}+{\it \_C1}=0,\int _{{ \it \_b}}^{x}\!-{\frac {1}{{\it \_a}} \left ( 24\,i\sqrt {3}{{\it \_a}} ^{6} \left ( y \left ( x \right ) \right ) ^{3}+12\,\sqrt [3]{-108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3} \sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5} {{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8}{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3 }+24\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}+i\sqrt { 3} \left ( -108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{ 12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8 \right ) ^{{\frac {2}{3}}}-4\,i\sqrt {3}- \left ( -108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^ {12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8 \right ) ^{{\frac {2}{3}}}-4\,\sqrt [ 3]{-108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\, \sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8}-4 \right ) \left ( 24\,i\sqrt {3}{{\it \_a}}^ {6} \left ( y \left ( x \right ) \right ) ^{3}+36\,\sqrt [3]{-108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\,\sqrt {3} \sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5} {{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8}{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3 }+24\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}+i\sqrt { 3} \left ( -108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{ 12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8 \right ) ^{{\frac {2}{3}}}-4\,i\sqrt {3}- \left ( -108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^ {12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8 \right ) ^{{\frac {2}{3}}}-4\,\sqrt [ 3]{-108\, \left ( y \left ( x \right ) \right ) ^{6}{{\it \_a}}^{12}+12\, \sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-4}{y \left ( x \right ) }}} \left ( y \left ( x \right ) \right ) ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6} \left ( y \left ( x \right ) \right ) ^{3}-8}-4 \right ) ^{-1}}\,{\rm d}{\it \_a}+\int ^{y \left ( x \right ) }\!12\,{{x}^{6}{{\it \_f}}^{2}\sqrt [3]{-108\,{{\it \_f}}^{6}{x}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{x}^{6}{{\it \_f}}^{ 3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{x}^{9}+72\,{x}^{6}{{\it \_f}}^{3}-8} \left ( 24\,i\sqrt {3}{x}^{6}{{\it \_f}}^{3}+36\,\sqrt [3]{-108\,{{ \it \_f}}^{6}{x}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{x}^{6}{{\it \_f }}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{x}^{9}+72\,{x}^{6}{{\it \_f}}^{3 }-8}{x}^{6}{{\it \_f}}^{3}+24\,{x}^{6}{{\it \_f}}^{3}+i\sqrt {3} \left ( -108\,{{\it \_f}}^{6}{x}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\, {x}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{x}^{9}+72\,{x}^{ 6}{{\it \_f}}^{3}-8 \right ) ^{2/3}-4\,i\sqrt {3}- \left ( -108\,{{\it \_f}}^{6}{x}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{x}^{6}{{\it \_f}}^{ 3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{x}^{9}+72\,{x}^{6}{{\it \_f}}^{3}-8 \right ) ^{2/3}-4\,\sqrt [3]{-108\,{{\it \_f}}^{6}{x}^{12}+12\,\sqrt { 3}\sqrt {{\frac {27\,{x}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}} ^{5}{x}^{9}+72\,{x}^{6}{{\it \_f}}^{3}-8}-4 \right ) ^{-1}}-\int _{{\it \_b}}^{x}\!-{\frac {1}{{\it \_a}} \left ( 72\,i\sqrt {3}{{\it \_a}}^{6} {{\it \_f}}^{2}+4\,{{{\it \_a}}^{6}{{\it \_f}}^{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2} }}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27 \,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3} \sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{ \it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3} \sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{ \it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{-2/3}}+36\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+ 12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{ \it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f }}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^{2}+72\,{{\it \_a}}^{6}{{\it \_f}} ^{2}+{{\frac {2\,i}{3}}\sqrt {3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a }}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27 \,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{ {\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{ \it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{ \it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}} ^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) {\frac {1}{\sqrt [3]{ -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\, {{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a }}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}}}}-{\frac {2}{3} \left ( - 648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{ \it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{ \it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{ \sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+ 60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{ \it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) {\frac {1}{\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a} }^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}- 4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{ \it \_f}}^{3}-8}}}}-{\frac {4}{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f} \,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6 }{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{ \it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}} ^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^ {6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{ {\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{-{\frac {2}{3}}}} \right ) \left ( 24\,i\sqrt {3}{{\it \_a}}^{6}{{\it \_f}}^{3}+36\,\sqrt [3]{- 108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{ {\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a} }^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^ {3}+24\,{{\it \_a}}^{6}{{\it \_f}}^{3}+i\sqrt {3} \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^ {6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{ {\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{{\frac {2}{3}}}-4\,i\sqrt {3 }- \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{ \frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{ 5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{{ \frac {2}{3}}}-4\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\, \sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f }}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}- 8}-4 \right ) ^{-1}}+{\frac {1}{{\it \_a}} \left ( 24\,i\sqrt {3}{{\it \_a}}^{6}{{\it \_f}}^{3}+12\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a} }^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}- 4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{ \it \_f}}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^{3}+24\,{{\it \_a}}^{6}{{ \it \_f}}^{3}+i\sqrt {3} \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+ 12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{ \it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f }}^{3}-8 \right ) ^{{\frac {2}{3}}}-4\,i\sqrt {3}- \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^ {6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{ {\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{{\frac {2}{3}}}-4\,\sqrt [3] {-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27 \,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}-4 \right ) \left ( 72\, i\sqrt {3}{{\it \_a}}^{6}{{\it \_f}}^{2}+12\,{{{\it \_a}}^{6}{{\it \_f }}^{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{ \it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^ {3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6} {{\it \_f}}^{2} \right ) \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+ 12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{ \it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f }}^{3}-8 \right ) ^{-2/3}}+108\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^ {3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{ {\it \_f}}^{3}-8}{{\it \_a}}^{6}{{\it \_f}}^{2}+72\,{{\it \_a}}^{6}{{ \it \_f}}^{2}+{{\frac {2\,i}{3}}\sqrt {3} \left ( -648\,{{\it \_f}}^{5} {{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{ \frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{ \it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{ \frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{ 4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) {\frac { 1}{\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}} ^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}}}}-{\frac {2 }{3} \left ( -648\,{{\it \_f}}^{5}{{\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{\frac {27\,{{\it \_a}}^{6}{{\it \_f} }^{3}-4}{{{\it \_f}}^{2}}}+81\,{\it \_f}\,{{\it \_a}}^{6} \right ) { \frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^ {3}-4}{{\it \_f}}}}{{\it \_f}}^{4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6} {{\it \_f}}^{2} \right ) {\frac {1}{\sqrt [3]{-108\,{{\it \_f}}^{6}{{ \it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a} }^{6}{{\it \_f}}^{3}-8}}}}-{\frac {4}{3} \left ( -648\,{{\it \_f}}^{5}{ {\it \_a}}^{12}+6\,{\sqrt {3}{{\it \_f}}^{5}{{\it \_a}}^{9} \left ( -{ \frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{{\it \_f}}^{2}}}+81\,{ \it \_f}\,{{\it \_a}}^{6} \right ) {\frac {1}{\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}}}}+60\,\sqrt {3}\sqrt {{ \frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{ 4}{{\it \_a}}^{9}+216\,{{\it \_a}}^{6}{{\it \_f}}^{2} \right ) \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\, {{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a }}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{-{\frac {2}{3}}} } \right ) \left ( 24\,i\sqrt {3}{{\it \_a}}^{6}{{\it \_f}}^{3}+36\, \sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{ \frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{ 5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8}{{\it \_a}}^{6} {{\it \_f}}^{3}+24\,{{\it \_a}}^{6}{{\it \_f}}^{3}+i\sqrt {3} \left ( - 108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{ {\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a} }^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{{\frac {2}{3}}}-4 \,i\sqrt {3}- \left ( -108\,{{\it \_f}}^{6}{{\it \_a}}^{12}+12\,\sqrt { 3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3}-4}{{\it \_f}}}}{{ \it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{\it \_f}}^{3}-8 \right ) ^{{\frac {2}{3}}}-4\,\sqrt [3]{-108\,{{\it \_f}}^{6}{{\it \_a }}^{12}+12\,\sqrt {3}\sqrt {{\frac {27\,{{\it \_a}}^{6}{{\it \_f}}^{3} -4}{{\it \_f}}}}{{\it \_f}}^{5}{{\it \_a}}^{9}+72\,{{\it \_a}}^{6}{{ \it \_f}}^{3}-8}-4 \right ) ^{-2}}\,{\rm d}{\it \_a}{d{\it \_f}}+{\it \_C1}=0,y \left ( x \right ) ={\frac {{2}^{{\frac {2}{3}}}}{3\,{x}^{2}}} ,y \left ( x \right ) ={\frac {-{\frac {{2}^{{\frac {2}{3}}}}{2}}-{ \frac {i}{2}}\sqrt {3}{2}^{{\frac {2}{3}}}}{3\,{x}^{2}}},y \left ( x \right ) ={\frac {-{\frac {{2}^{{\frac {2}{3}}}}{2}}+{\frac {i}{2}} \sqrt {3}{2}^{{\frac {2}{3}}}}{3\,{x}^{2}}} \right \} \]