\[ \boxed { f \left ( x-3/2\, \left ( {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) \right ) ^{2} \right ) + \left ( {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) \right ) ^{3}-y \left ( x \right ) =0} \]
Mathematica: cpu = 0.014502 (sec), leaf count = 102 \[ \left \{\left \{y(x)\to \frac {1}{9} \left (9 f\left (c_1\right )+2 \sqrt {6} x \sqrt {x-c_1}-2 \sqrt {6} c_1 \sqrt {x-c_1}\right ),y(x)\to \frac {1}{9} \left (9 f\left (c_1\right )-2 \sqrt {6} x \sqrt {x-c_1}+2 \sqrt {6} c_1 \sqrt {x-c_1}\right )\right \}\right \} \]
Maple: cpu = 0.109 (sec), leaf count = 67 \[ \left \{ y \left ( x \right ) =f \left ( {\it \_C1} \right ) -{\frac {2}{9 }\sqrt {-6\,{{\it \_C1}}^{3}+18\,{{\it \_C1}}^{2}x-18\,{x}^{2}{\it \_C1}+6\,{x}^{3}}},y \left ( x \right ) =f \left ( {\it \_C1} \right ) +{ \frac {2}{9}\sqrt {-6\,{{\it \_C1}}^{3}+18\,{{\it \_C1}}^{2}x-18\,{x}^ {2}{\it \_C1}+6\,{x}^{3}}} \right \} \]