\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) -a\sqrt {y \left ( x \right ) }-bx=0} \]
Mathematica: cpu = 0.153020 (sec), leaf count = 119 \[ \text {Solve}\left [\frac {a^2 \left (-\log \left (a^2 \left (\sqrt {\frac {a^2 y(x)}{b^2 x^2}}+1\right )-\frac {2 a^2 y(x)}{b x^2}\right )-\frac {2 a \tanh ^{-1}\left (\frac {a^2-4 b \sqrt {\frac {a^2 y(x)}{b^2 x^2}}}{a \sqrt {a^2+8 b}}\right )}{\sqrt {a^2+8 b}}\right )}{2 b}=\frac {a^2 \log (x)}{b}+c_1,y(x)\right ] \]
Maple: cpu = 0.078 (sec), leaf count = 68 \[ \left \{ -{\frac {1}{2}\ln \left ( \sqrt {y \left ( x \right ) }ax+b{x}^ {2}-2\,y \left ( x \right ) \right ) }+{a\sqrt {y \left ( x \right ) }{ \it Artanh} \left ( {1 \left ( a\sqrt {y \left ( x \right ) }+2\,bx \right ) {\frac {1}{\sqrt {y \left ( x \right ) \left ( {a}^{2}+8\,b \right ) }}}} \right ) {\frac {1}{\sqrt {y \left ( x \right ) \left ( {a} ^{2}+8\,b \right ) }}}}+{\it \_C1}=0 \right \} \]
Sage: cpu = 0 (sec), leaf count = 0 \[ \text {Maxima was unable to solve this ODE} \]