[next] [prev] [prev-tail] [tail] [up]
ddxy(x)=(y(x))2xF(−−1+y(x)ln(x)y(x))=0
Mathematica: cpu = 19.556483 (sec), leaf count = 242 Solve[∫1y(x)(1K[2]2(−F(1−log(x)K[2]K[2])−1)−∫1x((−log(K[1])K[2]−1−K[2]log(K[1])K[2]2)F′(1−K[2]log(K[1])K[2])K[1](F(1−K[2]log(K[1])K[2])+1)−(−log(K[1])K[2]−1−K[2]log(K[1])K[2]2)F(1−K[2]log(K[1])K[2])F′(1−K[2]log(K[1])K[2])K[1](F(1−K[2]log(K[1])K[2])+1)2)dK[1])dK[2]+∫1xF(1−y(x)log(K[1])y(x))K[1](F(1−y(x)log(K[1])y(x))+1)dK[1]=c1,y(x)]
Maple: cpu = 0.124 (sec), leaf count = 38 {∫_by(x)1_a2(F(1−_aln(x)_a)+1)−1d_a−ln(x)−_C1=0}
[next] [prev] [prev-tail] [front] [up]