[next] [prev] [prev-tail] [tail] [up]
ddxy(x)=xy(x)F(−−(y(x))2+bx2)=0
Mathematica: cpu = 17.877770 (sec), leaf count = 233 Solve[∫1y(x)(−∫1x(K[1]F(K[2]2−bK[1]2)(2K[2]F′(K[2]2−bK[1]2)−2K[2])(K[1]2F(K[2]2−bK[1]2)−K[2]2+b)2−2K[2]F′(K[2]2−bK[1]2)K[1](K[1]2F(K[2]2−bK[1]2)−K[2]2+b))dK[1]−K[2]x2(−F(K[2]2−bx2))+K[2]2−b)dK[2]+∫1x−K[1]F(y(x)2−bK[1]2)K[1]2F(y(x)2−bK[1]2)+b−y(x)2dK[1]=c1,y(x)]
Maple: cpu = 0.140 (sec), leaf count = 67 {y(x)=RootOf(−2ln(x)+∫_Z(F(_a)−_a)−1d_a+2_C1)x2+b,y(x)=−RootOf(−2ln(x)+∫_Z(F(_a)−_a)−1d_a+2_C1)x2+b}
[next] [prev] [prev-tail] [front] [up]