\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) =-{\frac {y \left ( x \right ) \left ( -\ln \left ( {x}^{-1} \right ) +{{\rm e}^{x}}+y \left ( x \right ) {x}^{2}\ln \left ( x \right ) +{x}^{3}y \left ( x \right ) -x\ln \left ( x \right ) -{x}^{2} \right ) }{ \left ( -\ln \left ( {x}^{-1} \right ) +{{\rm e}^{x}} \right ) x}}=0} \]
Mathematica: cpu = 0 (sec), leaf count = 0 \[ \text {Hanged} \]
Maple: cpu = 0.327 (sec), leaf count = 104 \[ \left \{ y \left ( x \right ) ={1{{\rm e}^{\int \!-{\frac {-x\ln \left ( x \right ) -{x}^{2}+{{\rm e}^{x}}-\ln \left ( {x}^{-1} \right ) }{ \left ( -\ln \left ( {x}^{-1} \right ) +{{\rm e}^{x}} \right ) x}} \,{\rm d}x}} \left ( \int \!{\frac {x \left ( x+\ln \left ( x \right ) \right ) }{-\ln \left ( {x}^{-1} \right ) +{{\rm e}^{x}}}{{\rm e}^{ \int \!-{\frac {-x\ln \left ( x \right ) -{x}^{2}+{{\rm e}^{x}}-\ln \left ( {x}^{-1} \right ) }{ \left ( -\ln \left ( {x}^{-1} \right ) +{ {\rm e}^{x}} \right ) x}}\,{\rm d}x}}}\,{\rm d}x+{\it \_C1} \right ) ^{- 1}} \right \} \]