3.722   ODE No. 722

ddxy(x)=(y(x))3(1+2y(x)ln(x)y(x))x=0

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

Mathematica: cpu = 63.894114 (sec), leaf count = 491 Solve[23((2)2/3(12log(x))2(1(2log(x)1)3)2/3(y(x)(54log(x))+2)223(y(x)(2log(x)1)1))(y(x)(4log(x)5)2231(2log(x)1)33(2log(x)1)(y(x)(2log(x)1)1)+(2)2/3)(log((2)2/3(12log(x))2(1(2log(x)1)3)2/3(y(x)(54log(x))+2)223(y(x)(2log(x)1)1))(13(1(2log(x)1)3)2/3(12log(x))2(y(x)(4log(x)5)2)y(x)(4log(x)2)2+1)+log(y(x)(4log(x)5)2231(2log(x)1)33(2log(x)1)(y(x)(2log(x)1)1)+(2)2/3)(13(1(2log(x)1)3)2/3(12log(x))2(y(x)(4log(x)5)2)y(x)(4log(x)2)2+1)3)9((y(x)(4log(x)5)2)38(y(x)(2log(x)1)1)3+313(y(x)(4log(x)5)2)2(12log(x))4(1(2log(x)1)3)4/3(y(x)(2log(x)1)1)+2)=c1+4922/3log(x)(1(2log(x)1)3)2/3(12log(x))2,y(x)]

Maple: cpu = 0.281 (sec), leaf count = 96 {y(x)=1eRootOf(e_Zln(e_Z+22x4)+3e_Z_C1+_Ze_Z+2)(2eRootOf(e_Zln(1/2e_Z+2x4)+3e_Z_C1+_Ze_Z+2)ln(x)eRootOf(e_Zln(e_Z+22x4)+3e_Z_C1+_Ze_Z+2)+1)1}