3.724   ODE No. 724

ddxy(x)=(y(x))3(1+y(x)ln(x)y(x))x=0

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

Mathematica: cpu = 64.507191 (sec), leaf count = 420 Solve[23(1y(x)(log(x)4)231(log(x)1)33(log(x)1)(y(x)(log(x)1)1)+(2)2/3)(22/3(y(x)(log(x)4)1)1(log(x)1)33(log(x)1)(y(x)(log(x)1)1)+(2)2/3)(log(1y(x)(log(x)4)231(log(x)1)33(log(x)1)(y(x)(log(x)1)1)+(2)2/3)(13(1y(x)(log(x)4))1(log(x)1)33(log(x)1)(y(x)(log(x)1)1)+1)+log(22/3(y(x)(log(x)4)1)1(log(x)1)33(log(x)1)(y(x)(log(x)1)1)+(2)2/3)(13(1y(x)(log(x)4))1(log(x)1)33(log(x)1)(y(x)(log(x)1)1)+1)3)9((y(x)(log(x)4)1)3(y(x)(log(x)1)1)3+313(y(x)(log(x)4)1)(1(log(x)1)3)4/3(log(x)1)4(y(x)(log(x)1)1)+2)=c1+1922/3(1(log(x)1)3)2/3log(x)(log(x)1)2,y(x)]

Maple: cpu = 0.047 (sec), leaf count = 18 {y(x)=(lambertW(_C1e2x)+ln(x)2)1}