\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac {x+ \left ( y \left ( x \right ) \right ) ^{4}-2\,{x}^{2} \left ( y \left ( x \right ) \right ) ^{2}+{x}^{4}}{y \left ( x \right ) }}=0} \]
Mathematica: cpu = 0.067509 (sec), leaf count = 74 \[ \left \{\left \{y(x)\to -\frac {\sqrt {2 c_1 x^2+2 x^3-1}}{\sqrt {2} \sqrt {c_1+x}}\right \},\left \{y(x)\to \frac {\sqrt {2 c_1 x^2+2 x^3-1}}{\sqrt {2} \sqrt {c_1+x}}\right \}\right \} \]
Maple: cpu = 0.093 (sec), leaf count = 72 \[ \left \{ y \left ( x \right ) ={\frac {\sqrt {2}}{2\,x+2\,{\it \_C1}} \sqrt { \left ( x+{\it \_C1} \right ) \left ( 2\,{x}^{2}{\it \_C1}+2\,{x }^{3}-1 \right ) }},y \left ( x \right ) =-{\frac {\sqrt {2}}{2\,x+2\,{ \it \_C1}}\sqrt { \left ( x+{\it \_C1} \right ) \left ( 2\,{x}^{2}{\it \_C1}+2\,{x}^{3}-1 \right ) }} \right \} \]