\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac { \left ( x-y \left ( x \right ) \right ) ^{2} \left ( y \left ( x \right ) +x \right ) ^{2}x}{y \left ( x \right ) }}=0} \]
Mathematica: cpu = 0.106013 (sec), leaf count = 126 \[ \left \{\left \{y(x)\to -\frac {\sqrt {x^2 e^{4 c_1+2 x^2}-e^{4 c_1+2 x^2}+x^2+1}}{\sqrt {e^{4 c_1+2 x^2}+1}}\right \},\left \{y(x)\to \frac {\sqrt {x^2 e^{4 c_1+2 x^2}-e^{4 c_1+2 x^2}+x^2+1}}{\sqrt {e^{4 c_1+2 x^2}+1}}\right \}\right \} \]
Maple: cpu = 0.109 (sec), leaf count = 192 \[ \left \{ y \left ( x \right ) ={1\sqrt { \left ( {\it \_C1}\,{{\rm e}^{-{ \frac {{x}^{2} \left ( {x}^{2}-2 \right ) }{2}}}}+{{\rm e}^{-{\frac {{x} ^{2} \left ( {x}^{2}+2 \right ) }{2}}}} \right ) \left ( \left ( {x}^{2}+ 1 \right ) {{\rm e}^{-{\frac {{x}^{2} \left ( {x}^{2}+2 \right ) }{2}}}}+ {\it \_C1}\, \left ( {x}^{2}-1 \right ) {{\rm e}^{-{\frac {{x}^{2} \left ( {x}^{2}-2 \right ) }{2}}}} \right ) } \left ( {\it \_C1}\,{ {\rm e}^{-{\frac {{x}^{2} \left ( {x}^{2}-2 \right ) }{2}}}}+{{\rm e}^{- {\frac {{x}^{2} \left ( {x}^{2}+2 \right ) }{2}}}} \right ) ^{-1}},y \left ( x \right ) =-{1\sqrt { \left ( {\it \_C1}\,{{\rm e}^{-{\frac {{x }^{2} \left ( {x}^{2}-2 \right ) }{2}}}}+{{\rm e}^{-{\frac {{x}^{2} \left ( {x}^{2}+2 \right ) }{2}}}} \right ) \left ( \left ( {x}^{2}+1 \right ) {{\rm e}^{-{\frac {{x}^{2} \left ( {x}^{2}+2 \right ) }{2}}}}+{ \it \_C1}\, \left ( {x}^{2}-1 \right ) {{\rm e}^{-{\frac {{x}^{2} \left ( {x}^{2}-2 \right ) }{2}}}} \right ) } \left ( {\it \_C1}\,{ {\rm e}^{-{\frac {{x}^{2} \left ( {x}^{2}-2 \right ) }{2}}}}+{{\rm e}^{- {\frac {{x}^{2} \left ( {x}^{2}+2 \right ) }{2}}}} \right ) ^{-1}} \right \} \]