\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac {y \left ( x \right ) }{x\ln \left ( x \right ) } \left ( -\ln \left ( x \right ) -x\ln \left ( {\frac { \left ( 1+x \right ) \left ( x-1 \right ) }{x}} \right ) +\ln \left ( {\frac { \left ( 1+x \right ) \left ( x-1 \right ) }{x}} \right ) {x}^{2}y \left ( x \right ) \right ) }=0} \]
Mathematica: cpu = 0 (sec), leaf count = 0 \[ \text {Hanged} \]
Maple: cpu = 0.234 (sec), leaf count = 85 \[ \left \{ y \left ( x \right ) ={1{{\rm e}^{\int \!-{\frac {1}{x\ln \left ( x \right ) } \left ( x\ln \left ( {\frac { \left ( 1+x \right ) \left ( x-1 \right ) }{x}} \right ) +\ln \left ( x \right ) \right ) } \,{\rm d}x}} \left ( \int \!-{\frac {x}{\ln \left ( x \right ) }{{\rm e} ^{\int \!-{\frac {1}{x\ln \left ( x \right ) } \left ( x\ln \left ( { \frac { \left ( 1+x \right ) \left ( x-1 \right ) }{x}} \right ) +\ln \left ( x \right ) \right ) }\,{\rm d}x}}\ln \left ( {\frac { \left ( 1+ x \right ) \left ( x-1 \right ) }{x}} \right ) }\,{\rm d}x+{\it \_C1} \right ) ^{-1}} \right \} \]