\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac {y \left ( x \right ) }{x\tanh \left ( {x}^{-1} \right ) } \left ( -\tanh \left ( {x}^{-1} \right ) -\ln \left ( {\frac {{x}^{2}+1}{x}} \right ) x+\ln \left ( {\frac {{x}^{2}+1}{x}} \right ) {x}^{2}y \left ( x \right ) \right ) }=0} \]
Mathematica: cpu = 0 (sec), leaf count = 0 \[ \text {Hanged} \]
Maple: cpu = 0.530 (sec), leaf count = 92 \[ \left \{ y \left ( x \right ) ={1{{\rm e}^{\int \!-{\frac {1}{x\tanh \left ( {x}^{-1} \right ) } \left ( \ln \left ( {\frac {{x}^{2}+1}{x}} \right ) x+\tanh \left ( {x}^{-1} \right ) \right ) }\,{\rm d}x}} \left ( \int \!-{\frac {x}{\tanh \left ( {x}^{-1} \right ) }{{\rm e}^{ \int \!-{\frac {1}{x\tanh \left ( {x}^{-1} \right ) } \left ( \ln \left ( {\frac {{x}^{2}+1}{x}} \right ) x+\tanh \left ( {x}^{-1} \right ) \right ) }\,{\rm d}x}}\ln \left ( {\frac {{x}^{2}+1}{x}} \right ) }\,{\rm d}x+{\it \_C1} \right ) ^{-1}} \right \} \]