[next] [prev] [prev-tail] [tail] [up]
ddxy(x)=2x2cosh((x−1)−1)−2xcosh((x−1)−1)−1+(y(x))2−2x2y(x)+x4−x+x(y(x))2−2x3y(x)+x5(x−1)cosh((x−1)−1)=0
Mathematica: cpu = 1670.398114 (sec), leaf count = 87 {{y(x)→exp(∫1x2(K[5]+1)sech(1K[5]−1)K[5]−1dK[5])c1−12exp(Integrate[2(K[5]+1)sech(1K[5]−1)K[5]−1,{K[5],1,x},Assumptions→True])+x3+x2x+1+1}}
Maple: cpu = 12.699 (sec), leaf count = 634 {y(x)=1(x2(e_C1(e(x−1)−1)2+1e2(x−1)−1)4(e_C1(e(x−1)−1)2+1)4(e1(e(x−1)−1)2+1∫(e(x−1)−1x1+x+xe(x−1)−1(1+x)−e(x−1)−11+x−1e(x−1)−1(1+x))−1dxe2(x−1)−1)−4(e1(e(x−1)−1)2+1∫(e(x−1)−1x1+x+xe(x−1)−1(1+x)−e(x−1)−11+x−1e(x−1)−1(1+x))−1dx)−4−x2+1(e_C1(e(x−1)−1)2+1e2(x−1)−1)4(e_C1(e(x−1)−1)2+1)4(e1(e(x−1)−1)2+1∫(e(x−1)−1x1+x+xe(x−1)−1(1+x)−e(x−1)−11+x−1e(x−1)−1(1+x))−1dxe2(x−1)−1)−4(e1(e(x−1)−1)2+1∫(e(x−1)−1x1+x+xe(x−1)−1(1+x)−e(x−1)−11+x−1e(x−1)−1(1+x))−1dx)−4+1)(−1+1(e_C1(e(x−1)−1)2+1e2(x−1)−1)4(e_C1(e(x−1)−1)2+1)4(e1(e(x−1)−1)2+1∫(e(x−1)−1x1+x+xe(x−1)−1(1+x)−e(x−1)−11+x−1e(x−1)−1(1+x))−1dxe2(x−1)−1)−4(e1(e(x−1)−1)2+1∫(e(x−1)−1x1+x+xe(x−1)−1(1+x)−e(x−1)−11+x−1e(x−1)−1(1+x))−1dx)−4)−1}
[next] [prev] [prev-tail] [front] [up]