\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac {y \left ( x \right ) }{x \left ( -1+y \left ( x \right ) +{x}^{2} \left ( y \left ( x \right ) \right ) ^{3}+ \left ( y \left ( x \right ) \right ) ^{4}{x}^{3} \right ) }}=0} \]
Mathematica: cpu = 0.091512 (sec), leaf count = 67 \[ \text {Solve}\left [\text {RootSum}\left [\text {$\#$1}^3 y(x)^3+\text {$\#$1}^2 y(x)^2+1\& ,\frac {\text {$\#$1} y(x) \log (x-\text {$\#$1})+\log (x-\text {$\#$1})}{3 \text {$\#$1} y(x)+2}\& \right ]+y(x)-\log (x)=c_1,y(x)\right ] \]
Maple: cpu = 0.390 (sec), leaf count = 32 \[ \left \{ -y \left ( x \right ) +\int ^{xy \left ( x \right ) }\!{\frac {1 }{{\it \_a}\, \left ( {{\it \_a}}^{3}+{{\it \_a}}^{2}+1 \right ) }}{d{ \it \_a}}-{\it \_C1}=0 \right \} \]