3.796   ODE No. 796

ddxy(x)=1/3x(y(x))3e3x2(3e3/2x2+e3/2x2y(x)+3y(x))e9/2x2=0

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

Mathematica: cpu = 9.404194 (sec), leaf count = 102 Solve[162(31log(9e3x22(y(x)+3)y(x)+3e3x2(y(x)+3)2y(x)2)+693tanh1(331(2e3x22(y(x)+3)+3y(x))y(x))+93x2)+log(y(x))=c1,y(x)]

Maple: cpu = 1.155 (sec), leaf count = 143 {y(x)=RootOf((7e3x2+RootOf((e3/2x2)2(4293tanh((_C15_Z)9390)e3x2+_Z+217(tanh((_C15_Z)9390))2e3x2+_Z+189e3x2+_Z93(tanh((_C15_Z)9390))2+93))+9(e3/2x2)2+27e3/2x23)_Z2+81+(54e3/2x2+81)_Z)e3x22}