[next] [prev] [prev-tail] [tail] [up]
ddxy(x)=_F1((y(x))2−2ln(x))(y(x))2x=0
Mathematica: cpu = 0.080010 (sec), leaf count = 386 Solve[∫1y(x)(−∫1x(4K[2](_F1(K[2]2−2log(K[1])))3_F1′(K[2]2−2log(K[1]))K[1]((_F1(K[2]2−2log(K[1])))2−1)2+4K[2]2(_F1(K[2]2−2log(K[1])))2_F1′(K[2]2−2log(K[1]))K[1]((_F1(K[2]2−2log(K[1])))2−1)2−4K[2]_F1(K[2]2−2log(K[1]))_F1′(K[2]2−2log(K[1]))K[1]((_F1(K[2]2−2log(K[1])))2−1)−2K[2]2_F1′(K[2]2−2log(K[1]))K[1]((_F1(K[2]2−2log(K[1])))2−1))dK[1]+K[2](_F1(K[2]2−2log(x)))2−1+K[2]2_F1(K[2]2−2log(x))(_F1(K[2]2−2log(x)))2−1)dK[2]+∫1x(−(_F1(y(x)2−2log(K[1])))2K[1]((_F1(y(x)2−2log(K[1])))2−1)−y(x)2_F1(y(x)2−2log(K[1]))y(x)K[1]((_F1(y(x)2−2log(K[1])))2−1))dK[1]=c1,y(x)]
Maple: cpu = 0.327 (sec), leaf count = 65 {y(x)=2ln(x)+2RootOf(ln(x)−∫_Z(_F1(2_a)−1)−1d_a+_C1),y(x)=−2ln(x)+2RootOf(ln(x)−∫_Z(_F1(2_a)−1)−1d_a+_C1)}
[next] [prev] [prev-tail] [front] [up]