\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) =- \left ( -x-{\it \_F1} \left ( y \left ( x \right ) -\ln \left ( x \right ) \right ) y \left ( x \right ) {{\rm e}^{y \left ( x \right ) }} \right ) ^{-1}=0} \]
Mathematica: cpu = 1.852735 (sec), leaf count = 34 \[ \text {DSolve}\left [y'(x)=-\frac {1}{-e^{y(x)} y(x) \text {$\_$F1}(y(x)-\log (x))-x},y(x),x\right ] \]
Maple: cpu = 0.468 (sec), leaf count = 43 \[ \left \{ {\frac { \left ( \ln \left ( x \right ) \right ) ^{2}}{2}}-y \left ( x \right ) \ln \left ( x \right ) -\int ^{y \left ( x \right ) - \ln \left ( x \right ) }\!{\frac {{\it \_F1} \left ( {\it \_a} \right ) { \it \_a}+{{\rm e}^{-{\it \_a}}}}{{\it \_F1} \left ( {\it \_a} \right ) } }{d{\it \_a}}+{\it \_C1}=0 \right \} \]