\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac {-125+300\,x-240\,{x}^{2}+64\,{x}^{3}-80\, \left ( y \left ( x \right ) \right ) ^{2}+64\,x \left ( y \left ( x \right ) \right ) ^{2}+64\, \left ( y \left ( x \right ) \right ) ^{3}}{ \left ( 4\,x-5 \right ) ^{3}}}=0} \]
Mathematica: cpu = 0.153020 (sec), leaf count = 128 \[ \text {Solve}\left [-\frac {19}{3} \text {RootSum}\left [-19 \text {$\#$1}^3+6 \sqrt [3]{38} \text {$\#$1}-19\& ,\frac {\log \left (\frac {\frac {192 y(x)}{(4 x-5)^3}+\frac {16}{(4 x-5)^2}}{16 \sqrt [3]{38} \sqrt [3]{\frac {1}{(4 x-5)^6}}}-\text {$\#$1}\right )}{2 \sqrt [3]{38}-19 \text {$\#$1}^2}\& \right ]=c_1+\frac {1}{9} 38^{2/3} \left (\frac {1}{(5-4 x)^6}\right )^{2/3} (5-4 x)^4 \log (5-4 x),y(x)\right ] \]
Maple: cpu = 0.015 (sec), leaf count = 41 \[ \left \{ y \left ( x \right ) =-{\frac {{\it RootOf} \left ( -\int ^{{ \it \_Z}}\! \left ( {{\it \_a}}^{3}-{{\it \_a}}^{2}-{\it \_a}-1 \right ) ^{-1}{d{\it \_a}}+\ln \left ( 4\,x-5 \right ) +{\it \_C1} \right ) \left ( 4\,x-5 \right ) }{4}} \right \} \]