\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac {y \left ( x \right ) \left ( {x}^{3}+{x}^{2}y \left ( x \right ) + \left ( y \left ( x \right ) \right ) ^{2} \right ) }{{x}^{2} \left ( x-1 \right ) \left ( y \left ( x \right ) +x \right ) }}=0} \]
Mathematica: cpu = 0.055007 (sec), leaf count = 68 \[ \text {Solve}\left [-\frac {1}{2} \log \left (\frac {y(x)^2}{x^2}+\frac {y(x)}{x}+1\right )+\log \left (\frac {y(x)}{x}\right )+\frac {\tan ^{-1}\left (\frac {\frac {2 y(x)}{x}+1}{\sqrt {3}}\right )}{\sqrt {3}}=c_1+\log (1-x)-\log (x),y(x)\right ] \]
Maple: cpu = 0.280 (sec), leaf count = 61 \[ \left \{ \ln \left ( {\frac {y \left ( x \right ) }{x}} \right ) -{\frac {1}{2}\ln \left ( {\frac { \left ( y \left ( x \right ) \right ) ^{2}+xy \left ( x \right ) +{x}^{2}}{{x}^{2}}} \right ) }+{\frac {\sqrt {3}}{3} \arctan \left ( {\frac { \left ( x+2\,y \left ( x \right ) \right ) \sqrt {3}}{3\,x}} \right ) }+\ln \left ( x \right ) -\ln \left ( x-1 \right ) - {\it \_C1}=0 \right \} \]