\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac {y \left ( x \right ) +{x}^{3} \left ( \ln \left ( x \right ) \right ) ^{3}+2\,{x}^{3} \left ( \ln \left ( x \right ) \right ) ^{2}y \left ( x \right ) +{x}^{3}\ln \left ( x \right ) \left ( y \left ( x \right ) \right ) ^{2}}{x\ln \left ( x \right ) }}=0} \]
Mathematica: cpu = 0.124016 (sec), leaf count = 198 \[ \left \{\left \{y(x)\to -\frac {c_1 e^{\frac {1}{9} x^3 (3 \log (x)-1)} \left (\frac {x^2}{3}+\frac {1}{3} x^2 (3 \log (x)-1)\right )+\frac {1}{9} x^3 e^{\frac {1}{9} x^3 (3 \log (x)-1)} (3 \log (x)-1) \left (\frac {x^2}{3}+\frac {1}{3} x^2 (3 \log (x)-1)\right )+\frac {1}{3} x^2 e^{\frac {1}{9} x^3 (3 \log (x)-1)}+\frac {1}{3} x^2 e^{\frac {1}{9} x^3 (3 \log (x)-1)} (3 \log (x)-1)}{x^2 \left (c_1 e^{\frac {1}{9} x^3 (3 \log (x)-1)}+\frac {1}{9} x^3 e^{\frac {1}{9} x^3 (3 \log (x)-1)} (3 \log (x)-1)\right )}\right \}\right \} \]
Maple: cpu = 0.015 (sec), leaf count = 43 \[ \left \{ y \left ( x \right ) =-{\frac {\ln \left ( x \right ) \left ( 6 \,{x}^{3}\ln \left ( x \right ) -2\,{x}^{3}+9\,{\it \_C1}+18 \right ) }{ 6\,{x}^{3}\ln \left ( x \right ) -2\,{x}^{3}+9\,{\it \_C1}}} \right \} \]