\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac {y \left ( x \right ) \left ( \ln \left ( y \left ( x \right ) \right ) -1+\ln \left ( x \right ) +{x}^{3} \left ( \ln \left ( x \right ) \right ) ^{2}+2\,{x}^{3}\ln \left ( y \left ( x \right ) \right ) \ln \left ( x \right ) +{x}^{3} \left ( \ln \left ( y \left ( x \right ) \right ) \right ) ^{2} \right ) }{x}}=0} \]
Mathematica: cpu = 0.671585 (sec), leaf count = 49 \[ \text {DSolve}\left [y'(x)=\frac {y(x) \left (x^3 \log ^2(y(x))+2 x^3 \log (x) \log (y(x))+x^3 \log ^2(x)+\log (y(x))+\log (x)-1\right )}{x},y(x),x\right ] \]
Maple: cpu = 0.156 (sec), leaf count = 51 \[ \left \{ y \left ( x \right ) ={1 \left ( {x}^{{\frac {{x}^{4}}{{x}^{4}+4 \,{\it \_C1}}}} \right ) ^{-1} \left ( {x}^{{\frac {{\it \_C1}}{{x}^{4}+ 4\,{\it \_C1}}}} \right ) ^{-4} \left ( {{\rm e}^{{\frac {x}{{x}^{4}+4\, {\it \_C1}}}}} \right ) ^{-4}} \right \} \]