\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) = \left ( {\frac {\ln \left ( -1+y \left ( x \right ) \right ) y \left ( x \right ) }{ \left ( 1-y \left ( x \right ) \right ) \ln \left ( x \right ) x}}-{\frac {\ln \left ( -1+y \left ( x \right ) \right ) }{ \left ( 1-y \left ( x \right ) \right ) \ln \left ( x \right ) x}}-f \left ( x \right ) \right ) \left ( 1-y \left ( x \right ) \right ) =0} \]
Mathematica: cpu = 150.792648 (sec), leaf count = 84 \[ \text {Solve}\left [\int _1^x \left (-\frac {f(K[1])}{\log (K[1])}-\frac {\log (y(x)-1)}{K[1] \log ^2(K[1])}\right ) \, dK[1]+\int _1^{y(x)} \left (\frac {1}{\log (x) (K[2]-1)}-\int _1^x -\frac {1}{K[1] (K[2]-1) \log ^2(K[1])} \, dK[1]\right ) \, dK[2]=c_1,y(x)\right ] \]
Maple: cpu = 0.156 (sec), leaf count = 23 \[ \left \{ y \left ( x \right ) ={{\rm e}^{\int \!{\frac {f \left ( x \right ) }{\ln \left ( x \right ) }}\,{\rm d}x\ln \left ( x \right ) }}{ x}^{{\it \_C1}}+1 \right \} \]