\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac {-18\,xy \left ( x \right ) -6\,{x}^{3}-18\,x+27\, \left ( y \left ( x \right ) \right ) ^{3}+27\,{x}^{2} \left ( y \left ( x \right ) \right ) ^{2}+9\,y \left ( x \right ) {x}^{4}+{x}^{6}}{27\,y \left ( x \right ) +9\,{x}^{2}+27}}=0} \]
Mathematica: cpu = 0.017502 (sec), leaf count = 75 \[ \left \{\left \{y(x)\to \frac {1}{27 \left (\frac {1}{27}-\frac {1}{\sqrt {c_1-1458 x}}\right )}+\frac {1}{3} \left (-x^2-3\right )\right \},\left \{y(x)\to \frac {1}{27 \left (\frac {1}{\sqrt {c_1-1458 x}}+\frac {1}{27}\right )}+\frac {1}{3} \left (-x^2-3\right )\right \}\right \} \]
Maple: cpu = 0.047 (sec), leaf count = 75 \[ \left \{ y \left ( x \right ) ={\frac {1}{-6\,x+6\,{\it \_C1}} \left ( -2 \,{\it \_C1}\,{x}^{2}+2\,{x}^{3}+3\,\sqrt {2\,{\it \_C1}-2\,x+1}+3 \right ) },y \left ( x \right ) =-{\frac {1}{-6\,x+6\,{\it \_C1}} \left ( 2\,{\it \_C1}\,{x}^{2}-2\,{x}^{3}+3\,\sqrt {2\,{\it \_C1}-2\,x +1}-3 \right ) } \right \} \]