\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac { \left ( y \left ( x \right ) \right ) ^{2} \left ( -2\,y \left ( x \right ) +2\,{x}^{2}+2\,{x}^{2}y \left ( x \right ) +y \left ( x \right ) {x}^{4} \right ) }{{x}^{3} \left ( {x}^{2}-y \left ( x \right ) +{x}^{2}y \left ( x \right ) \right ) }}=0} \]
Mathematica: cpu = 0.020503 (sec), leaf count = 135 \[ \left \{\left \{y(x)\to \frac {x^5}{\frac {\sqrt {x^5 \left (c_1-2 \left (\frac {1}{2 x^4}-\frac {1}{x^2}+\log (x)\right )\right )+\left (x^2-1\right )^2 x}}{\sqrt {\frac {1}{x^5}}}-x^3 \left (x^2-1\right )}\right \},\left \{y(x)\to -\frac {x^5}{\frac {\sqrt {x^5 \left (c_1-2 \left (\frac {1}{2 x^4}-\frac {1}{x^2}+\log (x)\right )\right )+\left (x^2-1\right )^2 x}}{\sqrt {\frac {1}{x^5}}}+\left (x^2-1\right ) x^3}\right \}\right \} \]
Maple: cpu = 0.047 (sec), leaf count = 56 \[ \left \{ y \left ( x \right ) ={{x}^{2} \left ( \sqrt {{\it \_C1}-2\,\ln \left ( x \right ) }{x}^{2}-{x}^{2}+1 \right ) ^{-1}},y \left ( x \right ) =-{{x}^{2} \left ( \sqrt {{\it \_C1}-2\,\ln \left ( x \right ) }{x}^{2}+{x}^{2}-1 \right ) ^{-1}} \right \} \]