\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) ={\frac {-32\,xy \left ( x \right ) +16\,{x}^{3}+16\,{x}^{2}-32\,x-64\, \left ( y \left ( x \right ) \right ) ^{3}+48\,{x}^{2} \left ( y \left ( x \right ) \right ) ^{2}+96\,x \left ( y \left ( x \right ) \right ) ^{2}-12\,y \left ( x \right ) {x}^{4}-48\,{x}^{3}y \left ( x \right ) -48\,{x}^{2}y \left ( x \right ) +{x}^{6}+6\,{x}^{5}+12\,{x}^{4}}{-64\,y \left ( x \right ) +16\,{x}^{2}+32\,x-64}}=0} \]
Mathematica: cpu = 0.380548 (sec), leaf count = 136 \[ \text {Solve}\left [\frac {2}{5} \text {RootSum}\left [\text {$\#$1}^4+4 \text {$\#$1}^3-8 \text {$\#$1}^2 y(x)-16 \text {$\#$1} y(x)-8 \text {$\#$1}+16 y(x)^2+16 y(x)+8\& ,\frac {\text {$\#$1}^2 (-\log (x-\text {$\#$1}))+4 y(x) \log (x-\text {$\#$1})-2 \text {$\#$1} \log (x-\text {$\#$1})+3 \log (x-\text {$\#$1})}{-\text {$\#$1}^2-2 \text {$\#$1}+4 y(x)+2}\& \right ]-\frac {4}{5} \log \left (x^2-4 y(x)+2 x+4\right )+x=c_1,y(x)\right ] \]
Maple: cpu = 0.094 (sec), leaf count = 70 \[ \left \{ x+{\frac {2}{5}\ln \left ( 2\, \left ( y \left ( x \right ) -1/4 \,{x}^{2}-x/2 \right ) ^{2}+2\,y \left ( x \right ) -{\frac {{x}^{2}}{2}} -x+1 \right ) }-{\frac {2}{5}\arctan \left ( -1-2\,y \left ( x \right ) +{ \frac {{x}^{2}}{2}}+x \right ) }-{\frac {4}{5}\ln \left ( y \left ( x \right ) -{\frac {{x}^{2}}{4}}-{\frac {x}{2}}-1 \right ) }-{\it \_C1}=0 \right \} \]