\[ \boxed { {\frac {\rm d}{{\rm d}x}}y \left ( x \right ) =1/25\,{\frac {-150\,{x}^{3}y \left ( x \right ) +60\,{x}^{6}+350\,{x}^{7/2}-150\,{x}^{3}-125\,y \left ( x \right ) \sqrt {x}+250\,x-125\,\sqrt {x}-125\, \left ( y \left ( x \right ) \right ) ^{3}+150\,{x}^{3} \left ( y \left ( x \right ) \right ) ^{2}+750\, \left ( y \left ( x \right ) \right ) ^{2}\sqrt {x}-60\,y \left ( x \right ) {x}^{6}-600\,y \left ( x \right ) {x}^{7/2}-1500\,xy \left ( x \right ) +8\,{x}^{9}+120\,{x}^{13/2}+600\,{x}^{4}+1000\,{x}^{3/2}}{ \left ( -5\,y \left ( x \right ) +2\,{x}^{3}+10\,\sqrt {x}-5 \right ) x}}=0} \]
Mathematica: cpu = 0.043006 (sec), leaf count = 112 \[ \left \{\left \{y(x)\to \frac {1}{5} \left (2 x^3+10 \sqrt {x}-5\right )-\frac {1}{125 x \left (-\frac {1}{x \sqrt {c_1-31250 \log (x)}}-\frac {1}{125 x}\right )}\right \},\left \{y(x)\to \frac {1}{5} \left (2 x^3+10 \sqrt {x}-5\right )-\frac {1}{125 x \left (\frac {1}{x \sqrt {c_1-31250 \log (x)}}-\frac {1}{125 x}\right )}\right \}\right \} \]
Maple: cpu = 0.078 (sec), leaf count = 111 \[ \left \{ y \left ( x \right ) ={\frac {1}{5} \left ( 2\,\sqrt {{\it \_C1} -2\,\ln \left ( x \right ) }{x}^{3}-2\,{x}^{3}+10\,\sqrt {x}\sqrt {{ \it \_C1}-2\,\ln \left ( x \right ) }-10\,\sqrt {x}+5 \right ) \left ( - 1+\sqrt {{\it \_C1}-2\,\ln \left ( x \right ) } \right ) ^{-1}},y \left ( x \right ) ={\frac {1}{5} \left ( 2\,\sqrt {{\it \_C1}-2\,\ln \left ( x \right ) }{x}^{3}+2\,{x}^{3}+10\,\sqrt {x}\sqrt {{\it \_C1}-2 \,\ln \left ( x \right ) }+10\,\sqrt {x}-5 \right ) \left ( 1+\sqrt {{ \it \_C1}-2\,\ln \left ( x \right ) } \right ) ^{-1}} \right \} \]