\[ \boxed { x{\frac {\rm d}{{\rm d}x}}y \left ( x \right ) +a \left ( y \left ( x \right ) \right ) ^{2}-by \left ( x \right ) +c{x}^{2\,b}=0} \]
Mathematica: cpu = 0.022503 (sec), leaf count = 442 \[ \left \{\left \{y(x)\to -\frac {\sqrt {-a} \sqrt {-c} x^b \left (\frac {\sqrt {\frac {2}{\pi }} c_1 \sin \left (\frac {\sqrt {-a} \sqrt {-c} x^b}{b}\right )}{\sqrt {\frac {\sqrt {-a} \sqrt {-c} x^b}{b}}}-\frac {2 \sqrt {\frac {2}{\pi }} \cos \left (\frac {\sqrt {-a} \sqrt {-c} x^b}{b}\right )}{\sqrt {\frac {\sqrt {-a} \sqrt {-c} x^b}{b}}}-\frac {\sqrt {\frac {2}{\pi }} c_1 \left (-\sin \left (\frac {\sqrt {-a} \sqrt {-c} x^b}{b}\right )-\frac {\sqrt {-a} b \sqrt {-c} x^{-b} \cos \left (\frac {\sqrt {-a} \sqrt {-c} x^b}{b}\right )}{a c}\right )}{\sqrt {\frac {\sqrt {-a} \sqrt {-c} x^b}{b}}}\right )-\frac {\sqrt {\frac {2}{\pi }} b c_1 \cos \left (\frac {\sqrt {-a} \sqrt {-c} x^b}{b}\right )}{\sqrt {\frac {\sqrt {-a} \sqrt {-c} x^b}{b}}}}{2 a \left (\frac {\sqrt {\frac {2}{\pi }} \sin \left (\frac {\sqrt {-a} \sqrt {-c} x^b}{b}\right )}{\sqrt {\frac {\sqrt {-a} \sqrt {-c} x^b}{b}}}+\frac {\sqrt {\frac {2}{\pi }} c_1 \cos \left (\frac {\sqrt {-a} \sqrt {-c} x^b}{b}\right )}{\sqrt {\frac {\sqrt {-a} \sqrt {-c} x^b}{b}}}\right )}\right \}\right \} \]
Maple: cpu = 0.046 (sec), leaf count = 38 \[ \left \{ y \left ( x \right ) =-{\frac {1}{{x}^{-b}}\tan \left ( {\frac { 1}{b} \left ( {x}^{b}\sqrt {a}\sqrt {c}+{\it \_C1}\,b \right ) } \right ) \sqrt {c}{\frac {1}{\sqrt {a}}}} \right \} \]