3.983   ODE No. 983

ddxy(x)=(y(x))33x(y(x))2+3x2y(x)x3+x2(1+x)(x1)=0

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

Mathematica: cpu = 0.255032 (sec), leaf count = 238 Solve[13log(3y(x)x213xx2131(x1)3(x+1)33+1)16log((3y(x)x213xx21)29(1(x1)3(x+1)3)2/33y(x)x213xx2131(x1)3(x+1)33+1)+tan1(2(3y(x)x213xx21)31(x1)3(x+1)3313)3=c1+12(1(x21)3)2/3(x21)2(log(1x)log(x+1)),y(x)]

Maple: cpu = 0.203 (sec), leaf count = 469 {y(x)=36(1(1+x)3(x1)333x2+31(1+x)3(x1)33tan(RootOf(18ln(1+x)(1(1+x)3(x1)3)2/3x4+18(1(1+x)3(x1)3)2/3ln(x1)x4+36ln(1+x)(1(1+x)3(x1)3)2/3x236(1(1+x)3(x1)3)2/3ln(x1)x218ln(1+x)(1(1+x)3(x1)3)2/3+18ln(x1)(1(1+x)3(x1)3)2/312_Z34ln(3/8(3+tan(_Z))33(1+x)3(x1)3)+4ln(1(1+x)3(x1)3)6ln(4/3((tan(_Z))2+1)1)+36_C1))x21(1+x)3(x1)3333tan(RootOf(18ln(1+x)(1(1+x)3(x1)3)2/3x4+18(1(1+x)3(x1)3)2/3ln(x1)x4+36ln(1+x)(1(1+x)3(x1)3)2/3x236(1(1+x)3(x1)3)2/3ln(x1)x218ln(1+x)(1(1+x)3(x1)3)2/3+18ln(x1)(1(1+x)3(x1)3)2/312_Z34ln(3/8(3+tan(_Z))33(1+x)3(x1)3)+4ln(1(1+x)3(x1)3)6ln(4/3((tan(_Z))2+1)1)+36_C1))1(1+x)3(x1)33+23x)}