[next] [prev] [prev-tail] [tail] [up]
ddxy(x)=(y(x))3−3x(y(x))2+3x2y(x)−x3+x2(1+x)(x−1)=0
Mathematica: cpu = 0.255032 (sec), leaf count = 238 Solve[13log(3y(x)x2−1−3xx2−131(x−1)3(x+1)33+1)−16log((3y(x)x2−1−3xx2−1)29(1(x−1)3(x+1)3)2/3−3y(x)x2−1−3xx2−131(x−1)3(x+1)33+1)+tan−1(2(3y(x)x2−1−3xx2−1)31(x−1)3(x+1)33−13)3=c1+12(1(x2−1)3)2/3(x2−1)2(log(1−x)−log(x+1)),y(x)]
Maple: cpu = 0.203 (sec), leaf count = 469 {y(x)=36(1(1+x)3(x−1)333x2+31(1+x)3(x−1)33tan(RootOf(−18ln(1+x)(1(1+x)3(x−1)3)2/3x4+18(1(1+x)3(x−1)3)2/3ln(x−1)x4+36ln(1+x)(1(1+x)3(x−1)3)2/3x2−36(1(1+x)3(x−1)3)2/3ln(x−1)x2−18ln(1+x)(1(1+x)3(x−1)3)2/3+18ln(x−1)(1(1+x)3(x−1)3)2/3−12_Z3−4ln(3/8(3+tan(_Z))33(1+x)3(x−1)3)+4ln(1(1+x)3(x−1)3)−6ln(4/3((tan(_Z))2+1)−1)+36_C1))x2−1(1+x)3(x−1)333−3tan(RootOf(−18ln(1+x)(1(1+x)3(x−1)3)2/3x4+18(1(1+x)3(x−1)3)2/3ln(x−1)x4+36ln(1+x)(1(1+x)3(x−1)3)2/3x2−36(1(1+x)3(x−1)3)2/3ln(x−1)x2−18ln(1+x)(1(1+x)3(x−1)3)2/3+18ln(x−1)(1(1+x)3(x−1)3)2/3−12_Z3−4ln(3/8(3+tan(_Z))33(1+x)3(x−1)3)+4ln(1(1+x)3(x−1)3)−6ln(4/3((tan(_Z))2+1)−1)+36_C1))1(1+x)3(x−1)33+23x)}
[next] [prev] [prev-tail] [front] [up]