\[ a y(x)+x^2 y''(x)+2 (x-1) y'(x)=0 \] ✓ Mathematica : cpu = 0.0551905 (sec), leaf count = 158
\[\left \{\left \{y(x)\to 2^{\frac {1}{2} \left (1-\sqrt {1-4 a}\right )} c_1 \left (\frac {1}{x}\right )^{\frac {1}{2} \left (1-\sqrt {1-4 a}\right )} \, _1F_1\left (\frac {1}{2}-\frac {1}{2} \sqrt {1-4 a};1-\sqrt {1-4 a};-\frac {2}{x}\right )+2^{\frac {1}{2} \left (\sqrt {1-4 a}+1\right )} c_2 \left (\frac {1}{x}\right )^{\frac {1}{2} \left (\sqrt {1-4 a}+1\right )} \, _1F_1\left (\frac {1}{2} \sqrt {1-4 a}+\frac {1}{2};\sqrt {1-4 a}+1;-\frac {2}{x}\right )\right \}\right \}\]
✓ Maple : cpu = 0.034 (sec), leaf count = 57
\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{{\rm e}^{-{x}^{-1}}}\sqrt {{x}^{-1}}{{\sl I}_{{\frac {1}{2}\sqrt {1-4\,a}}}\left ({x}^{-1}\right )}+{\it \_C2}\,{{\rm e}^{-{x}^{-1}}}\sqrt {{x}^{-1}}{{\sl K}_{{\frac {1}{2}\sqrt {1-4\,a}}}\left ({x}^{-1}\right )} \right \} \]