\[ (a x+b) y'(x)+c y(x)+x^2 y''(x)=0 \] ✓ Mathematica : cpu = 0.0841881 (sec), leaf count = 266
\[\left \{\left \{y(x)\to c_1 i^{-\sqrt {a^2-2 a-4 c+1}+a-1} b^{\frac {1}{2} \left (-\sqrt {a^2-2 a-4 c+1}+a-1\right )} \left (\frac {1}{x}\right )^{\frac {1}{2} \left (-\sqrt {a^2-2 a-4 c+1}+a-1\right )} \, _1F_1\left (\frac {a}{2}-\frac {1}{2} \sqrt {a^2-2 a-4 c+1}-\frac {1}{2};1-\sqrt {a^2-2 a-4 c+1};\frac {b}{x}\right )+c_2 i^{\sqrt {a^2-2 a-4 c+1}+a-1} b^{\frac {1}{2} \left (\sqrt {a^2-2 a-4 c+1}+a-1\right )} \left (\frac {1}{x}\right )^{\frac {1}{2} \left (\sqrt {a^2-2 a-4 c+1}+a-1\right )} \, _1F_1\left (\frac {a}{2}+\frac {1}{2} \sqrt {a^2-2 a-4 c+1}-\frac {1}{2};\sqrt {a^2-2 a-4 c+1}+1;\frac {b}{x}\right )\right \}\right \}\]
✓ Maple : cpu = 0.168 (sec), leaf count = 135
\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{x}^{-{\frac {1}{2}\sqrt {{a}^{2}-2\,a-4\,c+1}}-{\frac {a}{2}}+{\frac {1}{2}}}{{\sl M}\left (-{\frac {1}{2}}+{\frac {1}{2}\sqrt {{a}^{2}-2\,a-4\,c+1}}+{\frac {a}{2}},\,1+\sqrt {{a}^{2}-2\,a-4\,c+1},\,{\frac {b}{x}}\right )}+{\it \_C2}\,{x}^{-{\frac {1}{2}\sqrt {{a}^{2}-2\,a-4\,c+1}}-{\frac {a}{2}}+{\frac {1}{2}}}{{\sl U}\left (-{\frac {1}{2}}+{\frac {1}{2}\sqrt {{a}^{2}-2\,a-4\,c+1}}+{\frac {a}{2}},\,1+\sqrt {{a}^{2}-2\,a-4\,c+1},\,{\frac {b}{x}}\right )} \right \} \]