[next] [prev] [prev-tail] [tail] [up]
y(x)(2lx(−n+p−1)+2lp+m)+2(x(−2l+n+1)−lx2+n+1)y′(x)+x(x+2)y″(x)=0 ✗ Mathematica : cpu = 2.76288 (sec), leaf count = 0 , DifferentialRoot result
\left \{\left \{y(x)\to \text {DifferentialRoot}\left (\{\unicode {f818},\unicode {f817}\}\unicode {f4a1}\left \{(-2 \unicode {f817} l-2 \unicode {f817} n l+2 \unicode {f817} p l+2 p l+m) \unicode {f818}(\unicode {f817})+2 \left (-l \unicode {f817}^2-2 l \unicode {f817}+n \unicode {f817}+\unicode {f817}+n+1\right ) \unicode {f818}'(\unicode {f817})+\unicode {f817} (\unicode {f817}+2) \unicode {f818}''(\unicode {f817})=0,\unicode {f818}(1)=c_1,\unicode {f818}'(1)=c_2\right \}\right )(x)\right \}\right \}\left \{\left \{y(x)\to \text {DifferentialRoot}\left (\{\unicode {f818},\unicode {f817}\}\unicode {f4a1}\left \{(-2 \unicode {f817} l-2 \unicode {f817} n l+2 \unicode {f817} p l+2 p l+m) \unicode {f818}(\unicode {f817})+2 \left (-l \unicode {f817}^2-2 l \unicode {f817}+n \unicode {f817}+\unicode {f817}+n+1\right ) \unicode {f818}'(\unicode {f817})+\unicode {f817} (\unicode {f817}+2) \unicode {f818}''(\unicode {f817})=0,\unicode {f818}(1)=c_1,\unicode {f818}'(1)=c_2\right \}\right )(x)\right \}\right \}
✓ Maple : cpu = 0.257 (sec), leaf count = 124
{y(x)=_C1HeunC(4l,n,n,−4pl,(4n+4p+4)l2−n22+m−n,−x2)(x+2)−n2−12(−x2−1)n2+12+_C2HeunC(4l,−n,n,−4pl,(4n+4p+4)l2−n22+m−n,−x2)(x+2)−n2−12x−n(−x2−1)n2+12}
[next] [prev] [prev-tail] [front] [up]