[next] [prev] [prev-tail] [tail] [up]
y(x)(ax+b)+2(x−1)xy″(x)+(2x−1)y′(x)=0 ✗ Mathematica : cpu = 1.41281 (sec), leaf count = 0 , DifferentialRoot result
\left \{\left \{y(x)\to \text {DifferentialRoot}\left (\{\unicode {f818},\unicode {f817}\}\unicode {f4a1}\left \{(\unicode {f817} a+b) \unicode {f818}(\unicode {f817})+(2 \unicode {f817}-1) \unicode {f818}'(\unicode {f817})+2 (\unicode {f817}-1) \unicode {f817} \unicode {f818}''(\unicode {f817})=0,\unicode {f818}(2)=c_1,\unicode {f818}'(2)=c_2\right \}\right )(x)\right \}\right \}\left \{\left \{y(x)\to \text {DifferentialRoot}\left (\{\unicode {f818},\unicode {f817}\}\unicode {f4a1}\left \{(\unicode {f817} a+b) \unicode {f818}(\unicode {f817})+(2 \unicode {f817}-1) \unicode {f818}'(\unicode {f817})+2 (\unicode {f817}-1) \unicode {f817} \unicode {f818}''(\unicode {f817})=0,\unicode {f818}(2)=c_1,\unicode {f818}'(2)=c_2\right \}\right )(x)\right \}\right \}
✓ Maple : cpu = 0.147 (sec), leaf count = 39
{y(x)=_C1MathieuC(−a−2b,a2,arccos(x))+_C2MathieuS(−a−2b,a2,arccos(x))}
[next] [prev] [prev-tail] [front] [up]