\[ -a x-b+y'(x)+y(x)^2=0 \] ✓ Mathematica : cpu = 0.0424254 (sec), leaf count = 79
\[\left \{\left \{y(x)\to -\frac {\sqrt [3]{a} c_1 \text {Ai}'\left (\frac {b+a x}{a^{2/3}}\right )+\sqrt [3]{a} \text {Bi}'\left (\frac {b+a x}{a^{2/3}}\right )}{-c_1 \text {Ai}\left (\frac {b+a x}{a^{2/3}}\right )-\text {Bi}\left (\frac {b+a x}{a^{2/3}}\right )}\right \}\right \}\]
✓ Maple : cpu = 0.147 (sec), leaf count = 79
\[ \left \{ y \left ( x \right ) ={-i\sqrt [3]{-ia} \left ( {{\rm Ai}^{(1)}\left (-{(ax+b) \left ( -ia \right ) ^{-{\frac {2}{3}}}}\right )}{\it \_C1}+{{\rm Bi}^{(1)}\left (-{(ax+b) \left ( -ia \right ) ^{-{\frac {2}{3}}}}\right )} \right ) \left ( {{\rm Ai}\left (-{(ax+b) \left ( -ia \right ) ^{-{\frac {2}{3}}}}\right )}{\it \_C1}+{{\rm Bi}\left (-{(ax+b) \left ( -ia \right ) ^{-{\frac {2}{3}}}}\right )} \right ) ^{-1}} \right \} \]