[next] [prev] [prev-tail] [tail] [up]
y(x)(ax2+a+bx)+x3y″(x)+x2y′(x)=0 ✗ Mathematica : cpu = 0.989962 (sec), leaf count = 0 , DifferentialRoot result
\left \{\left \{y(x)\to \text {DifferentialRoot}\left (\{\unicode {f818},\unicode {f817}\}\unicode {f4a1}\left \{\unicode {f818}''(\unicode {f817}) \unicode {f817}^3+\unicode {f818}'(\unicode {f817}) \unicode {f817}^2+\left (a \unicode {f817}^2+b \unicode {f817}+a\right ) \unicode {f818}(\unicode {f817})=0,\unicode {f818}(1)=c_1,\unicode {f818}'(1)=c_2\right \}\right )(x)\right \}\right \}\left \{\left \{y(x)\to \text {DifferentialRoot}\left (\{\unicode {f818},\unicode {f817}\}\unicode {f4a1}\left \{\unicode {f818}''(\unicode {f817}) \unicode {f817}^3+\unicode {f818}'(\unicode {f817}) \unicode {f817}^2+\left (a \unicode {f817}^2+b \unicode {f817}+a\right ) \unicode {f818}(\unicode {f817})=0,\unicode {f818}(1)=c_1,\unicode {f818}'(1)=c_2\right \}\right )(x)\right \}\right \}
✓ Maple : cpu = 0.612 (sec), leaf count = 95
{y(x)=_C1HeunD(0,8a+4b,0,8a−4b,1+xx−1)+_C2HeunD(0,8a+4b,0,8a−4b,1+xx−1)∫1x(HeunD(0,8a+4b,0,8a−4b,1+xx−1))−2dx}
[next] [prev] [prev-tail] [front] [up]