\[ y''(x)=-\frac {y(x) \left (a \left (x^4+1\right )+b x^2\right )}{x^4}-\frac {y'(x)}{x} \] ✗ Mathematica : cpu = 1.26889 (sec), leaf count = 0 , DifferentialRoot result
\[\left \{\left \{y(x)\to \text {DifferentialRoot}\left (\{\unicode {f818},\unicode {f817}\}\unicode {f4a1}\left \{\unicode {f818}''(\unicode {f817}) \unicode {f817}^4+\unicode {f818}'(\unicode {f817}) \unicode {f817}^3+\left (a \unicode {f817}^4+b \unicode {f817}^2+a\right ) \unicode {f818}(\unicode {f817})=0,\unicode {f818}(1)=c_1,\unicode {f818}'(1)=c_2\right \}\right )(x)\right \}\right \}\]
✓ Maple : cpu = 0.182 (sec), leaf count = 101
\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{\it HeunD} \left ( 0,2\,a+b,0,2\,a-b,{\frac {{x}^{2}+1}{{x}^{2}-1}} \right ) +{\it \_C2}\,{\it HeunD} \left ( 0,2\,a+b,0,2\,a-b,{\frac {{x}^{2}+1}{{x}^{2}-1}} \right ) \int \!{\frac {1}{x} \left ( {\it HeunD} \left ( 0,2\,a+b,0,2\,a-b,{\frac {{x}^{2}+1}{{x}^{2}-1}} \right ) \right ) ^{-2}}\,{\rm d}x \right \} \]