2.1367   ODE No. 1367

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

y(x)=y(x)(a2(x2+1)2+m2n(n+1)(x2+1))(x2+1)22xy(x)x2+1 Mathematica : cpu = 2.29995 (sec), leaf count = 0 , DifferentialRoot result

\left \{\left \{y(x)\to \text {DifferentialRoot}\left (\{\unicode {f818},\unicode {f817}\}\unicode {f4a1}\left \{\unicode {f818}''(\unicode {f817}) \left (\unicode {f817}^2+1\right )^2+2 \unicode {f817} \unicode {f818}'(\unicode {f817}) \left (\unicode {f817}^2+1\right )+\left (a^2 \unicode {f817}^4+2 a^2 \unicode {f817}^2-n^2 \unicode {f817}^2-n \unicode {f817}^2+a^2+m^2-n^2-n\right ) \unicode {f818}(\unicode {f817})=0,\unicode {f818}(0)=c_1,\unicode {f818}'(0)=c_2\right \}\right )(x)\right \}\right \}

Maple : cpu = 0.492 (sec), leaf count = 96

{y(x)=_C1(x2+1)m2HeunC(0,12,m,a24,14+a24+m24n24n4,x2)+_C2(x2+1)m2xHeunC(0,12,m,a24,14+a24+m24n24n4,x2)}