[next] [prev] [prev-tail] [tail] [up]
y″(x)=−y′(x)(b1(−al1−bl1+1)b1x−a1+b2(−al2−bl2+1)b2x−a2+b3(−al3−bl3+1)b3x−a3)−y(x)(al1bl1(a1b2−a2b1)(a3b1−a1b3)b1x−a1+al2bl2(a1b2−a2b1)(a2b3−a3b2)b2x−a2+al3bl3(a3b1−a1b3)(a2b3−a3b2)b3x−a3)(b1x−a1)(b2x−a2)(b3x−a3) ✗ Mathematica : cpu = 299.997 (sec), leaf count = 0 , timed out
$Aborted
✓ Maple : cpu = 2.914 (sec), leaf count = 2907
{y(x)=_C1HeunG(b2(a1b3−a3b1)b3(a1b2−b1a2),−14b3(a1b2−b1a2)(((2b2(a1b3−a3b1)al22+6al2bl2+bl22+(4a1b3−2a3b1)b2−2a2b1b3)al12+6al1bl1+bl12−2b2(a1b3−a3b1)al22+6al2bl2+bl22+(2a1((−4bl1+bl2+bl3+al2+al3−2)al1+(bl2+bl3+al2+al3−2)bl1−bl2−bl3−al2−al3)b3−2a3((−2bl1+bl2+al2−1)al1+(−1+al2+bl2)bl1+2al3bl3+(−2bl2−1)al2−bl2)b1)b2−2b1((−2bl1+bl3+al3−1)al1+(−1+al3+bl3)bl1+(−2bl3−1)al3+2al2bl2−bl3)a2b3)al12+(2al2+2al3+2bl1+2bl2+2bl3−4)al1+al22+(2al3+2bl1+2bl2+2bl3−4)al2+2al32+(2bl1+2bl2+8bl3−4)al3+bl12+(2bl2+2bl3−4)bl1+bl22+(2bl3−4)bl2+2bl32−4bl3+2(al32+6al3bl3+bl32)(−2+al1+al2+al3+bl1+bl2+bl3)2+4+(a1b2−b1a2)((2al12+6al1bl1+bl12−2)(al32+6al3bl3+bl32)(−2+al1+al2+al3+bl1+bl2+bl3)2−(al12+6al1bl1+bl12)32+(al12+6al1bl1+2al32+12al3bl3+bl12+2bl32)al12+6al1bl1+bl12−2bl32−12al3bl3−2al32)b3)1al12+(2al2+2al3+2bl1+2bl2+2bl3−4)al1+al22+(2al3+2bl1+2bl2+2bl3−4)al2+2al32+(2bl1+2bl2+8bl3−4)al3+bl12+(2bl2+2bl3−4)bl1+bl22+(2bl3−4)bl2+2bl32−4bl3+2(al32+6al3bl3+bl32)(−2+al1+al2+al3+bl1+bl2+bl3)2+4,−12al12+6al1bl1+bl12+12al22+6al2bl2+bl22+1+12al12+(2al2+2al3+2bl1+2bl2+2bl3−4)al1+al22+(2al3+2bl1+2bl2+2bl3−4)al2+2al32+(2bl1+2bl2+8bl3−4)al3+bl12+(2bl2+2bl3−4)bl1+bl22+(2bl3−4)bl2+2bl32−4bl3+2(al32+6al3bl3+bl32)(−2+al1+al2+al3+bl1+bl2+bl3)2+4,−12((al12+6al1bl1+bl12−al22+6al2bl2+bl22−2)al12+(2al2+2al3+2bl1+2bl2+2bl3−4)al1+al22+(2al3+2bl1+2bl2+2bl3−4)al2+2al32+(2bl1+2bl2+8bl3−4)al3+bl12+(2bl2+2bl3−4)bl1+bl22+(2bl3−4)bl2+2bl32−4bl3+2(al32+6al3bl3+bl32)(−2+al1+al2+al3+bl1+bl2+bl3)2+4+(2al1+2al2−4al3+2bl1+2bl2−4)bl3+(al1+al2+bl1+bl2−2)(al1+al2+2al3+bl1+bl2−2))1al12+(2al2+2al3+2bl1+2bl2+2bl3−4)al1+al22+(2al3+2bl1+2bl2+2bl3−4)al2+2al32+(2bl1+2bl2+8bl3−4)al3+bl12+(2bl2+2bl3−4)bl1+bl22+(2bl3−4)bl2+2bl32−4bl3+2(al32+6al3bl3+bl32)(−2+al1+al2+al3+bl1+bl2+bl3)2+4,1−al12+6al1bl1+bl12,1+al22+6al2bl2+bl22,b2(−b1x+a1)a1b2−b1a2)(b1x−a1)al12+bl12−12al12+6al1bl1+bl12(b2x−a2)al22+bl22+12al22+6al2bl2+bl22(b3x−a3)12((al3+bl3)(2al1+2al2+2al3+2bl1+2bl2+2bl3−4)al32+6al3bl3+bl32+2bl32+(2al1+2al2+8al3+2bl1+2bl2−4)bl3+bl22+(2al1+2al2+2al3+2bl1−4)bl2+bl12+(2al1+2al2+2al3−4)bl1+2al32+(2al1+2al2−4)al3+(al1+al2−2)2+(−2+al1+al2+al3+bl1+bl2+bl3)al32+6al3bl3+bl32+al32+6al3bl3+bl32)1(2al1+2al2+2al3+2bl1+2bl2+2bl3−4)al32+6al3bl3+bl32+2bl32+(2al1+2al2+8al3+2bl1+2bl2−4)bl3+bl22+(2al1+2al2+2al3+2bl1−4)bl2+bl12+(2al1+2al2+2al3−4)bl1+2al32+(2al1+2al2−4)al3+(al1+al2−2)2+_C2HeunG(b2(a1b3−a3b1)b3(a1b2−b1a2),14b3(a1b2−b1a2)(−(−2(al22+6al2bl2+bl22a1b2b3−al22+6al2bl2+bl22a3b1b2+2a1b2b3−a2b1b3−a3b1b2)al12+6al1bl1+bl12−2b2(a1b3−a3b1)al22+6al2bl2+bl22+(2a1((−4bl1+bl2+bl3+al2+al3−2)al1+(bl2+bl3+al2+al3−2)bl1−bl2−bl3−al2−al3)b2−2b1((−2bl1+bl3+al3−1)al1+(−1+al3+bl3)bl1+(−2bl3−1)al3+2al2bl2−bl3)a2)b3−2((−2bl1+bl2+al2−1)al1+(−1+al2+bl2)bl1+2al3bl3+(−2bl2−1)al2−bl2)b2b1a3)al12+(2al2+2al3+2bl1+2bl2+2bl3−4)al1+al22+(2al3+2bl1+2bl2+2bl3−4)al2+2al32+(2bl1+2bl2+8bl3−4)al3+bl12+(2bl2+2bl3−4)bl1+bl22+(2bl3−4)bl2+2bl32−4bl3+2(al32+6al3bl3+bl32)(−2+al1+al2+al3+bl1+bl2+bl3)2+4−(a1b2−b1a2)(−2(1+al12+6al1bl1+bl12)(al32+6al3bl3+bl32)(−2+al1+al2+al3+bl1+bl2+bl3)2−(al12+6al1bl1+bl12)32+(al12+6al1bl1−2al32−12al3bl3+bl12−2bl32)al12+6al1bl1+bl12−2bl32−12al3bl3−2al32)b3)1al12+(2al2+2al3+2bl1+2bl2+2bl3−4)al1+al22+(2al3+2bl1+2bl2+2bl3−4)al2+2al32+(2bl1+2bl2+8bl3−4)al3+bl12+(2bl2+2bl3−4)bl1+bl22+(2bl3−4)bl2+2bl32−4bl3+2(al32+6al3bl3+bl32)(−2+al1+al2+al3+bl1+bl2+bl3)2+4,12al12+6al1bl1+bl12+12al22+6al2bl2+bl22+1+12al12+(2al2+2al3+2bl1+2bl2+2bl3−4)al1+al22+(2al3+2bl1+2bl2+2bl3−4)al2+2al32+(2bl1+2bl2+8bl3−4)al3+bl12+(2bl2+2bl3−4)bl1+bl22+(2bl3−4)bl2+2bl32−4bl3+2(al32+6al3bl3+bl32)(−2+al1+al2+al3+bl1+bl2+bl3)2+4,12((al12+6al1bl1+bl12+al22+6al2bl2+bl22+2)al12+(2al2+2al3+2bl1+2bl2+2bl3−4)al1+al22+(2al3+2bl1+2bl2+2bl3−4)al2+2al32+(2bl1+2bl2+8bl3−4)al3+bl12+(2bl2+2bl3−4)bl1+bl22+(2bl3−4)bl2+2bl32−4bl3+2(al32+6al3bl3+bl32)(−2+al1+al2+al3+bl1+bl2+bl3)2+4−(2al1+2al2−4al3+2bl1+2bl2−4)bl3−(al1+al2+bl1+bl2−2)(al1+al2+2al3+bl1+bl2−2))1al12+(2al2+2al3+2bl1+2bl2+2bl3−4)al1+al22+(2al3+2bl1+2bl2+2bl3−4)al2+2al32+(2bl1+2bl2+8bl3−4)al3+bl12+(2bl2+2bl3−4)bl1+bl22+(2bl3−4)bl2+2bl32−4bl3+2(al32+6al3bl3+bl32)(−2+al1+al2+al3+bl1+bl2+bl3)2+4,1+al12+6al1bl1+bl12,1+al22+6al2bl2+bl22,b2(−b1x+a1)a1b2−b1a2)(b1x−a1)al12+bl12+12al12+6al1bl1+bl12(b2x−a2)al22+bl22+12al22+6al2bl2+bl22(b3x−a3)12((al3+bl3)(2al1+2al2+2al3+2bl1+2bl2+2bl3−4)al32+6al3bl3+bl32+2bl32+(2al1+2al2+8al3+2bl1+2bl2−4)bl3+bl22+(2al1+2al2+2al3+2bl1−4)bl2+bl12+(2al1+2al2+2al3−4)bl1+2al32+(2al1+2al2−4)al3+(al1+al2−2)2+(−2+al1+al2+al3+bl1+bl2+bl3)al32+6al3bl3+bl32+al32+6al3bl3+bl32)1(2al1+2al2+2al3+2bl1+2bl2+2bl3−4)al32+6al3bl3+bl32+2bl32+(2al1+2al2+8al3+2bl1+2bl2−4)bl3+bl22+(2al1+2al2+2al3+2bl1−4)bl2+bl12+(2al1+2al2+2al3−4)bl1+2al32+(2al1+2al2−4)al3+(al1+al2−2)2}
[next] [prev] [prev-tail] [front] [up]