2.1407   ODE No. 1407

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

\[ y''(x)=-y'(x) \left (\frac {\text {b1} (-\text {al1}-\text {bl1}+1)}{\text {b1} x-\text {a1}}+\frac {\text {b2} (-\text {al2}-\text {bl2}+1)}{\text {b2} x-\text {a2}}+\frac {\text {b3} (-\text {al3}-\text {bl3}+1)}{\text {b3} x-\text {a3}}\right )-\frac {y(x) \left (\frac {\text {al1} \text {bl1} (\text {a1} \text {b2}-\text {a2} \text {b1}) (\text {a3} \text {b1}-\text {a1} \text {b3})}{\text {b1} x-\text {a1}}+\frac {\text {al2} \text {bl2} (\text {a1} \text {b2}-\text {a2} \text {b1}) (\text {a2} \text {b3}-\text {a3} \text {b2})}{\text {b2} x-\text {a2}}+\frac {\text {al3} \text {bl3} (\text {a3} \text {b1}-\text {a1} \text {b3}) (\text {a2} \text {b3}-\text {a3} \text {b2})}{\text {b3} x-\text {a3}}\right )}{(\text {b1} x-\text {a1}) (\text {b2} x-\text {a2}) (\text {b3} x-\text {a3})} \] Mathematica : cpu = 299.997 (sec), leaf count = 0 , timed out

$Aborted

Maple : cpu = 2.914 (sec), leaf count = 2907

\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{\it HeunG} \left ( {\frac {{\it b2}\, \left ( {\it a1}\,{\it b3}-{\it a3}\,{\it b1} \right ) }{{\it b3}\, \left ( {\it a1}\,{\it b2}-{\it b1}\,{\it a2} \right ) }},-{\frac {1}{4\,{\it b3}\, \left ( {\it a1}\,{\it b2}-{\it b1}\,{\it a2} \right ) } \left ( \left ( \left ( 2\,{\it b2}\, \left ( {\it a1}\,{\it b3}-{\it a3}\,{\it b1} \right ) \sqrt {{{\it al2}}^{2}+6\,{\it al2}\,{\it bl2}+{{\it bl2}}^{2}}+ \left ( 4\,{\it a1}\,{\it b3}-2\,{\it a3}\,{\it b1} \right ) {\it b2}-2\,{\it a2}\,{\it b1}\,{\it b3} \right ) \sqrt {{{\it al1}}^{2}+6\,{\it al1}\,{\it bl1}+{{\it bl1}}^{2}}-2\,{\it b2}\, \left ( {\it a1}\,{\it b3}-{\it a3}\,{\it b1} \right ) \sqrt {{{\it al2}}^{2}+6\,{\it al2}\,{\it bl2}+{{\it bl2}}^{2}}+ \left ( 2\,{\it a1}\, \left ( \left ( -4\,{\it bl1}+{\it bl2}+{\it bl3}+{\it al2}+{\it al3}-2 \right ) {\it al1}+ \left ( {\it bl2}+{\it bl3}+{\it al2}+{\it al3}-2 \right ) {\it bl1}-{\it bl2}-{\it bl3}-{\it al2}-{\it al3} \right ) {\it b3}-2\,{\it a3}\, \left ( \left ( -2\,{\it bl1}+{\it bl2}+{\it al2}-1 \right ) {\it al1}+ \left ( -1+{\it al2}+{\it bl2} \right ) {\it bl1}+2\,{\it al3}\,{\it bl3}+ \left ( -2\,{\it bl2}-1 \right ) {\it al2}-{\it bl2} \right ) {\it b1} \right ) {\it b2}-2\,{\it b1}\, \left ( \left ( -2\,{\it bl1}+{\it bl3}+{\it al3}-1 \right ) {\it al1}+ \left ( -1+{\it al3}+{\it bl3} \right ) {\it bl1}+ \left ( -2\,{\it bl3}-1 \right ) {\it al3}+2\,{\it al2}\,{\it bl2}-{\it bl3} \right ) {\it a2}\,{\it b3} \right ) \sqrt {{{\it al1}}^{2}+ \left ( 2\,{\it al2}+2\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it al1}+{{\it al2}}^{2}+ \left ( 2\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it al2}+2\,{{\it al3}}^{2}+ \left ( 2\,{\it bl1}+2\,{\it bl2}+8\,{\it bl3}-4 \right ) {\it al3}+{{\it bl1}}^{2}+ \left ( 2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it bl1}+{{\it bl2}}^{2}+ \left ( 2\,{\it bl3}-4 \right ) {\it bl2}+2\,{{\it bl3}}^{2}-4\,{\it bl3}+2\,\sqrt { \left ( {{\it al3}}^{2}+6\,{\it al3}\,{\it bl3}+{{\it bl3}}^{2} \right ) \left ( -2+{\it al1}+{\it al2}+{\it al3}+{\it bl1}+{\it bl2}+{\it bl3} \right ) ^{2}}+4}+ \left ( {\it a1}\,{\it b2}-{\it b1}\,{\it a2} \right ) \left ( \left ( 2\,\sqrt {{{\it al1}}^{2}+6\,{\it al1}\,{\it bl1}+{{\it bl1}}^{2}}-2 \right ) \sqrt { \left ( {{\it al3}}^{2}+6\,{\it al3}\,{\it bl3}+{{\it bl3}}^{2} \right ) \left ( -2+{\it al1}+{\it al2}+{\it al3}+{\it bl1}+{\it bl2}+{\it bl3} \right ) ^{2}}- \left ( {{\it al1}}^{2}+6\,{\it al1}\,{\it bl1}+{{\it bl1}}^{2} \right ) ^{{\frac {3}{2}}}+ \left ( {{\it al1}}^{2}+6\,{\it al1}\,{\it bl1}+2\,{{\it al3}}^{2}+12\,{\it al3}\,{\it bl3}+{{\it bl1}}^{2}+2\,{{\it bl3}}^{2} \right ) \sqrt {{{\it al1}}^{2}+6\,{\it al1}\,{\it bl1}+{{\it bl1}}^{2}}-2\,{{\it bl3}}^{2}-12\,{\it al3}\,{\it bl3}-2\,{{\it al3}}^{2} \right ) {\it b3} \right ) {\frac {1}{\sqrt {{{\it al1}}^{2}+ \left ( 2\,{\it al2}+2\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it al1}+{{\it al2}}^{2}+ \left ( 2\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it al2}+2\,{{\it al3}}^{2}+ \left ( 2\,{\it bl1}+2\,{\it bl2}+8\,{\it bl3}-4 \right ) {\it al3}+{{\it bl1}}^{2}+ \left ( 2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it bl1}+{{\it bl2}}^{2}+ \left ( 2\,{\it bl3}-4 \right ) {\it bl2}+2\,{{\it bl3}}^{2}-4\,{\it bl3}+2\,\sqrt { \left ( {{\it al3}}^{2}+6\,{\it al3}\,{\it bl3}+{{\it bl3}}^{2} \right ) \left ( -2+{\it al1}+{\it al2}+{\it al3}+{\it bl1}+{\it bl2}+{\it bl3} \right ) ^{2}}+4}}}},-{\frac {1}{2}\sqrt {{{\it al1}}^{2}+6\,{\it al1}\,{\it bl1}+{{\it bl1}}^{2}}}+{\frac {1}{2}\sqrt {{{\it al2}}^{2}+6\,{\it al2}\,{\it bl2}+{{\it bl2}}^{2}}}+1+{\frac {1}{2}\sqrt {{{\it al1}}^{2}+ \left ( 2\,{\it al2}+2\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it al1}+{{\it al2}}^{2}+ \left ( 2\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it al2}+2\,{{\it al3}}^{2}+ \left ( 2\,{\it bl1}+2\,{\it bl2}+8\,{\it bl3}-4 \right ) {\it al3}+{{\it bl1}}^{2}+ \left ( 2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it bl1}+{{\it bl2}}^{2}+ \left ( 2\,{\it bl3}-4 \right ) {\it bl2}+2\,{{\it bl3}}^{2}-4\,{\it bl3}+2\,\sqrt { \left ( {{\it al3}}^{2}+6\,{\it al3}\,{\it bl3}+{{\it bl3}}^{2} \right ) \left ( -2+{\it al1}+{\it al2}+{\it al3}+{\it bl1}+{\it bl2}+{\it bl3} \right ) ^{2}}+4}},-{\frac {1}{2} \left ( \left ( \sqrt {{{\it al1}}^{2}+6\,{\it al1}\,{\it bl1}+{{\it bl1}}^{2}}-\sqrt {{{\it al2}}^{2}+6\,{\it al2}\,{\it bl2}+{{\it bl2}}^{2}}-2 \right ) \sqrt {{{\it al1}}^{2}+ \left ( 2\,{\it al2}+2\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it al1}+{{\it al2}}^{2}+ \left ( 2\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it al2}+2\,{{\it al3}}^{2}+ \left ( 2\,{\it bl1}+2\,{\it bl2}+8\,{\it bl3}-4 \right ) {\it al3}+{{\it bl1}}^{2}+ \left ( 2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it bl1}+{{\it bl2}}^{2}+ \left ( 2\,{\it bl3}-4 \right ) {\it bl2}+2\,{{\it bl3}}^{2}-4\,{\it bl3}+2\,\sqrt { \left ( {{\it al3}}^{2}+6\,{\it al3}\,{\it bl3}+{{\it bl3}}^{2} \right ) \left ( -2+{\it al1}+{\it al2}+{\it al3}+{\it bl1}+{\it bl2}+{\it bl3} \right ) ^{2}}+4}+ \left ( 2\,{\it al1}+2\,{\it al2}-4\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}-4 \right ) {\it bl3}+ \left ( {\it al1}+{\it al2}+{\it bl1}+{\it bl2}-2 \right ) \left ( {\it al1}+{\it al2}+2\,{\it al3}+{\it bl1}+{\it bl2}-2 \right ) \right ) {\frac {1}{\sqrt {{{\it al1}}^{2}+ \left ( 2\,{\it al2}+2\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it al1}+{{\it al2}}^{2}+ \left ( 2\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it al2}+2\,{{\it al3}}^{2}+ \left ( 2\,{\it bl1}+2\,{\it bl2}+8\,{\it bl3}-4 \right ) {\it al3}+{{\it bl1}}^{2}+ \left ( 2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it bl1}+{{\it bl2}}^{2}+ \left ( 2\,{\it bl3}-4 \right ) {\it bl2}+2\,{{\it bl3}}^{2}-4\,{\it bl3}+2\,\sqrt { \left ( {{\it al3}}^{2}+6\,{\it al3}\,{\it bl3}+{{\it bl3}}^{2} \right ) \left ( -2+{\it al1}+{\it al2}+{\it al3}+{\it bl1}+{\it bl2}+{\it bl3} \right ) ^{2}}+4}}}},1-\sqrt {{{\it al1}}^{2}+6\,{\it al1}\,{\it bl1}+{{\it bl1}}^{2}},1+\sqrt {{{\it al2}}^{2}+6\,{\it al2}\,{\it bl2}+{{\it bl2}}^{2}},{\frac {{\it b2}\, \left ( -{\it b1}\,x+{\it a1} \right ) }{{\it a1}\,{\it b2}-{\it b1}\,{\it a2}}} \right ) \left ( {\it b1}\,x-{\it a1} \right ) ^{{\frac {{\it al1}}{2}}+{\frac {{\it bl1}}{2}}-{\frac {1}{2}\sqrt {{{\it al1}}^{2}+6\,{\it al1}\,{\it bl1}+{{\it bl1}}^{2}}}} \left ( {\it b2}\,x-{\it a2} \right ) ^{{\frac {{\it al2}}{2}}+{\frac {{\it bl2}}{2}}+{\frac {1}{2}\sqrt {{{\it al2}}^{2}+6\,{\it al2}\,{\it bl2}+{{\it bl2}}^{2}}}} \left ( {\it b3}\,x-{\it a3} \right ) ^{{\frac {1}{2} \left ( \left ( {\it al3}+{\it bl3} \right ) \sqrt { \left ( 2\,{\it al1}+2\,{\it al2}+2\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}+2\,{\it bl3}-4 \right ) \sqrt {{{\it al3}}^{2}+6\,{\it al3}\,{\it bl3}+{{\it bl3}}^{2}}+2\,{{\it bl3}}^{2}+ \left ( 2\,{\it al1}+2\,{\it al2}+8\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}-4 \right ) {\it bl3}+{{\it bl2}}^{2}+ \left ( 2\,{\it al1}+2\,{\it al2}+2\,{\it al3}+2\,{\it bl1}-4 \right ) {\it bl2}+{{\it bl1}}^{2}+ \left ( 2\,{\it al1}+2\,{\it al2}+2\,{\it al3}-4 \right ) {\it bl1}+2\,{{\it al3}}^{2}+ \left ( 2\,{\it al1}+2\,{\it al2}-4 \right ) {\it al3}+ \left ( {\it al1}+{\it al2}-2 \right ) ^{2}}+ \left ( -2+{\it al1}+{\it al2}+{\it al3}+{\it bl1}+{\it bl2}+{\it bl3} \right ) \sqrt {{{\it al3}}^{2}+6\,{\it al3}\,{\it bl3}+{{\it bl3}}^{2}}+{{\it al3}}^{2}+6\,{\it al3}\,{\it bl3}+{{\it bl3}}^{2} \right ) {\frac {1}{\sqrt { \left ( 2\,{\it al1}+2\,{\it al2}+2\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}+2\,{\it bl3}-4 \right ) \sqrt {{{\it al3}}^{2}+6\,{\it al3}\,{\it bl3}+{{\it bl3}}^{2}}+2\,{{\it bl3}}^{2}+ \left ( 2\,{\it al1}+2\,{\it al2}+8\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}-4 \right ) {\it bl3}+{{\it bl2}}^{2}+ \left ( 2\,{\it al1}+2\,{\it al2}+2\,{\it al3}+2\,{\it bl1}-4 \right ) {\it bl2}+{{\it bl1}}^{2}+ \left ( 2\,{\it al1}+2\,{\it al2}+2\,{\it al3}-4 \right ) {\it bl1}+2\,{{\it al3}}^{2}+ \left ( 2\,{\it al1}+2\,{\it al2}-4 \right ) {\it al3}+ \left ( {\it al1}+{\it al2}-2 \right ) ^{2}}}}}}+{\it \_C2}\,{\it HeunG} \left ( {\frac {{\it b2}\, \left ( {\it a1}\,{\it b3}-{\it a3}\,{\it b1} \right ) }{{\it b3}\, \left ( {\it a1}\,{\it b2}-{\it b1}\,{\it a2} \right ) }},{\frac {1}{4\,{\it b3}\, \left ( {\it a1}\,{\it b2}-{\it b1}\,{\it a2} \right ) } \left ( - \left ( -2\, \left ( \sqrt {{{\it al2}}^{2}+6\,{\it al2}\,{\it bl2}+{{\it bl2}}^{2}}{\it a1}\,{\it b2}\,{\it b3}-\sqrt {{{\it al2}}^{2}+6\,{\it al2}\,{\it bl2}+{{\it bl2}}^{2}}{\it a3}\,{\it b1}\,{\it b2}+2\,{\it a1}\,{\it b2}\,{\it b3}-{\it a2}\,{\it b1}\,{\it b3}-{\it a3}\,{\it b1}\,{\it b2} \right ) \sqrt {{{\it al1}}^{2}+6\,{\it al1}\,{\it bl1}+{{\it bl1}}^{2}}-2\,{\it b2}\, \left ( {\it a1}\,{\it b3}-{\it a3}\,{\it b1} \right ) \sqrt {{{\it al2}}^{2}+6\,{\it al2}\,{\it bl2}+{{\it bl2}}^{2}}+ \left ( 2\,{\it a1}\, \left ( \left ( -4\,{\it bl1}+{\it bl2}+{\it bl3}+{\it al2}+{\it al3}-2 \right ) {\it al1}+ \left ( {\it bl2}+{\it bl3}+{\it al2}+{\it al3}-2 \right ) {\it bl1}-{\it bl2}-{\it bl3}-{\it al2}-{\it al3} \right ) {\it b2}-2\,{\it b1}\, \left ( \left ( -2\,{\it bl1}+{\it bl3}+{\it al3}-1 \right ) {\it al1}+ \left ( -1+{\it al3}+{\it bl3} \right ) {\it bl1}+ \left ( -2\,{\it bl3}-1 \right ) {\it al3}+2\,{\it al2}\,{\it bl2}-{\it bl3} \right ) {\it a2} \right ) {\it b3}-2\, \left ( \left ( -2\,{\it bl1}+{\it bl2}+{\it al2}-1 \right ) {\it al1}+ \left ( -1+{\it al2}+{\it bl2} \right ) {\it bl1}+2\,{\it al3}\,{\it bl3}+ \left ( -2\,{\it bl2}-1 \right ) {\it al2}-{\it bl2} \right ) {\it b2}\,{\it b1}\,{\it a3} \right ) \sqrt {{{\it al1}}^{2}+ \left ( 2\,{\it al2}+2\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it al1}+{{\it al2}}^{2}+ \left ( 2\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it al2}+2\,{{\it al3}}^{2}+ \left ( 2\,{\it bl1}+2\,{\it bl2}+8\,{\it bl3}-4 \right ) {\it al3}+{{\it bl1}}^{2}+ \left ( 2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it bl1}+{{\it bl2}}^{2}+ \left ( 2\,{\it bl3}-4 \right ) {\it bl2}+2\,{{\it bl3}}^{2}-4\,{\it bl3}+2\,\sqrt { \left ( {{\it al3}}^{2}+6\,{\it al3}\,{\it bl3}+{{\it bl3}}^{2} \right ) \left ( -2+{\it al1}+{\it al2}+{\it al3}+{\it bl1}+{\it bl2}+{\it bl3} \right ) ^{2}}+4}- \left ( {\it a1}\,{\it b2}-{\it b1}\,{\it a2} \right ) \left ( -2\, \left ( 1+\sqrt {{{\it al1}}^{2}+6\,{\it al1}\,{\it bl1}+{{\it bl1}}^{2}} \right ) \sqrt { \left ( {{\it al3}}^{2}+6\,{\it al3}\,{\it bl3}+{{\it bl3}}^{2} \right ) \left ( -2+{\it al1}+{\it al2}+{\it al3}+{\it bl1}+{\it bl2}+{\it bl3} \right ) ^{2}}- \left ( {{\it al1}}^{2}+6\,{\it al1}\,{\it bl1}+{{\it bl1}}^{2} \right ) ^{{\frac {3}{2}}}+ \left ( {{\it al1}}^{2}+6\,{\it al1}\,{\it bl1}-2\,{{\it al3}}^{2}-12\,{\it al3}\,{\it bl3}+{{\it bl1}}^{2}-2\,{{\it bl3}}^{2} \right ) \sqrt {{{\it al1}}^{2}+6\,{\it al1}\,{\it bl1}+{{\it bl1}}^{2}}-2\,{{\it bl3}}^{2}-12\,{\it al3}\,{\it bl3}-2\,{{\it al3}}^{2} \right ) {\it b3} \right ) {\frac {1}{\sqrt {{{\it al1}}^{2}+ \left ( 2\,{\it al2}+2\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it al1}+{{\it al2}}^{2}+ \left ( 2\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it al2}+2\,{{\it al3}}^{2}+ \left ( 2\,{\it bl1}+2\,{\it bl2}+8\,{\it bl3}-4 \right ) {\it al3}+{{\it bl1}}^{2}+ \left ( 2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it bl1}+{{\it bl2}}^{2}+ \left ( 2\,{\it bl3}-4 \right ) {\it bl2}+2\,{{\it bl3}}^{2}-4\,{\it bl3}+2\,\sqrt { \left ( {{\it al3}}^{2}+6\,{\it al3}\,{\it bl3}+{{\it bl3}}^{2} \right ) \left ( -2+{\it al1}+{\it al2}+{\it al3}+{\it bl1}+{\it bl2}+{\it bl3} \right ) ^{2}}+4}}}},{\frac {1}{2}\sqrt {{{\it al1}}^{2}+6\,{\it al1}\,{\it bl1}+{{\it bl1}}^{2}}}+{\frac {1}{2}\sqrt {{{\it al2}}^{2}+6\,{\it al2}\,{\it bl2}+{{\it bl2}}^{2}}}+1+{\frac {1}{2}\sqrt {{{\it al1}}^{2}+ \left ( 2\,{\it al2}+2\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it al1}+{{\it al2}}^{2}+ \left ( 2\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it al2}+2\,{{\it al3}}^{2}+ \left ( 2\,{\it bl1}+2\,{\it bl2}+8\,{\it bl3}-4 \right ) {\it al3}+{{\it bl1}}^{2}+ \left ( 2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it bl1}+{{\it bl2}}^{2}+ \left ( 2\,{\it bl3}-4 \right ) {\it bl2}+2\,{{\it bl3}}^{2}-4\,{\it bl3}+2\,\sqrt { \left ( {{\it al3}}^{2}+6\,{\it al3}\,{\it bl3}+{{\it bl3}}^{2} \right ) \left ( -2+{\it al1}+{\it al2}+{\it al3}+{\it bl1}+{\it bl2}+{\it bl3} \right ) ^{2}}+4}},{\frac {1}{2} \left ( \left ( \sqrt {{{\it al1}}^{2}+6\,{\it al1}\,{\it bl1}+{{\it bl1}}^{2}}+\sqrt {{{\it al2}}^{2}+6\,{\it al2}\,{\it bl2}+{{\it bl2}}^{2}}+2 \right ) \sqrt {{{\it al1}}^{2}+ \left ( 2\,{\it al2}+2\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it al1}+{{\it al2}}^{2}+ \left ( 2\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it al2}+2\,{{\it al3}}^{2}+ \left ( 2\,{\it bl1}+2\,{\it bl2}+8\,{\it bl3}-4 \right ) {\it al3}+{{\it bl1}}^{2}+ \left ( 2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it bl1}+{{\it bl2}}^{2}+ \left ( 2\,{\it bl3}-4 \right ) {\it bl2}+2\,{{\it bl3}}^{2}-4\,{\it bl3}+2\,\sqrt { \left ( {{\it al3}}^{2}+6\,{\it al3}\,{\it bl3}+{{\it bl3}}^{2} \right ) \left ( -2+{\it al1}+{\it al2}+{\it al3}+{\it bl1}+{\it bl2}+{\it bl3} \right ) ^{2}}+4}- \left ( 2\,{\it al1}+2\,{\it al2}-4\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}-4 \right ) {\it bl3}- \left ( {\it al1}+{\it al2}+{\it bl1}+{\it bl2}-2 \right ) \left ( {\it al1}+{\it al2}+2\,{\it al3}+{\it bl1}+{\it bl2}-2 \right ) \right ) {\frac {1}{\sqrt {{{\it al1}}^{2}+ \left ( 2\,{\it al2}+2\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it al1}+{{\it al2}}^{2}+ \left ( 2\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it al2}+2\,{{\it al3}}^{2}+ \left ( 2\,{\it bl1}+2\,{\it bl2}+8\,{\it bl3}-4 \right ) {\it al3}+{{\it bl1}}^{2}+ \left ( 2\,{\it bl2}+2\,{\it bl3}-4 \right ) {\it bl1}+{{\it bl2}}^{2}+ \left ( 2\,{\it bl3}-4 \right ) {\it bl2}+2\,{{\it bl3}}^{2}-4\,{\it bl3}+2\,\sqrt { \left ( {{\it al3}}^{2}+6\,{\it al3}\,{\it bl3}+{{\it bl3}}^{2} \right ) \left ( -2+{\it al1}+{\it al2}+{\it al3}+{\it bl1}+{\it bl2}+{\it bl3} \right ) ^{2}}+4}}}},1+\sqrt {{{\it al1}}^{2}+6\,{\it al1}\,{\it bl1}+{{\it bl1}}^{2}},1+\sqrt {{{\it al2}}^{2}+6\,{\it al2}\,{\it bl2}+{{\it bl2}}^{2}},{\frac {{\it b2}\, \left ( -{\it b1}\,x+{\it a1} \right ) }{{\it a1}\,{\it b2}-{\it b1}\,{\it a2}}} \right ) \left ( {\it b1}\,x-{\it a1} \right ) ^{{\frac {{\it al1}}{2}}+{\frac {{\it bl1}}{2}}+{\frac {1}{2}\sqrt {{{\it al1}}^{2}+6\,{\it al1}\,{\it bl1}+{{\it bl1}}^{2}}}} \left ( {\it b2}\,x-{\it a2} \right ) ^{{\frac {{\it al2}}{2}}+{\frac {{\it bl2}}{2}}+{\frac {1}{2}\sqrt {{{\it al2}}^{2}+6\,{\it al2}\,{\it bl2}+{{\it bl2}}^{2}}}} \left ( {\it b3}\,x-{\it a3} \right ) ^{{\frac {1}{2} \left ( \left ( {\it al3}+{\it bl3} \right ) \sqrt { \left ( 2\,{\it al1}+2\,{\it al2}+2\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}+2\,{\it bl3}-4 \right ) \sqrt {{{\it al3}}^{2}+6\,{\it al3}\,{\it bl3}+{{\it bl3}}^{2}}+2\,{{\it bl3}}^{2}+ \left ( 2\,{\it al1}+2\,{\it al2}+8\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}-4 \right ) {\it bl3}+{{\it bl2}}^{2}+ \left ( 2\,{\it al1}+2\,{\it al2}+2\,{\it al3}+2\,{\it bl1}-4 \right ) {\it bl2}+{{\it bl1}}^{2}+ \left ( 2\,{\it al1}+2\,{\it al2}+2\,{\it al3}-4 \right ) {\it bl1}+2\,{{\it al3}}^{2}+ \left ( 2\,{\it al1}+2\,{\it al2}-4 \right ) {\it al3}+ \left ( {\it al1}+{\it al2}-2 \right ) ^{2}}+ \left ( -2+{\it al1}+{\it al2}+{\it al3}+{\it bl1}+{\it bl2}+{\it bl3} \right ) \sqrt {{{\it al3}}^{2}+6\,{\it al3}\,{\it bl3}+{{\it bl3}}^{2}}+{{\it al3}}^{2}+6\,{\it al3}\,{\it bl3}+{{\it bl3}}^{2} \right ) {\frac {1}{\sqrt { \left ( 2\,{\it al1}+2\,{\it al2}+2\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}+2\,{\it bl3}-4 \right ) \sqrt {{{\it al3}}^{2}+6\,{\it al3}\,{\it bl3}+{{\it bl3}}^{2}}+2\,{{\it bl3}}^{2}+ \left ( 2\,{\it al1}+2\,{\it al2}+8\,{\it al3}+2\,{\it bl1}+2\,{\it bl2}-4 \right ) {\it bl3}+{{\it bl2}}^{2}+ \left ( 2\,{\it al1}+2\,{\it al2}+2\,{\it al3}+2\,{\it bl1}-4 \right ) {\it bl2}+{{\it bl1}}^{2}+ \left ( 2\,{\it al1}+2\,{\it al2}+2\,{\it al3}-4 \right ) {\it bl1}+2\,{{\it al3}}^{2}+ \left ( 2\,{\it al1}+2\,{\it al2}-4 \right ) {\it al3}+ \left ( {\it al1}+{\it al2}-2 \right ) ^{2}}}}}} \right \} \]